August Forecast Update for Atlantic Hurricane Activity in 2016

Issued: 5th August 2016

by Professor Mark Saunders and Dr Adam Lea
Dept. of Space and Climate Physics, UCL (University College London), UK

Forecast Summary

TSR reduces its early July outlook and predicts Atlantic hurricane activity in 2016 will be slightly below the long-term average. This reduction is due to the influence of La Niña being less than anticipated previously.

The TSR (Tropical Storm Risk) August forecast update anticipates the 2016 Atlantic hurricane season will be near-average for activity. This is a reduction in our July outlook. Based on current and projected climate signals, Atlantic basin tropical cyclone activity is forecast to be slightly below the 1950-2015 long-term norm and similar to the recent 2006-2015 10-year norm. The forecast employs data through to the end of July 2016, spans the full 2016 Atlantic hurricane season and includes hurricane Alex which formed in January 2016. The TSR outlook has decreased since early July because the forecast La Niña is developing more slowly than anticipated 1-2 months ago. It is now thought that La Niña will sustain only weak levels during the main hurricane months of August-September-October, in contrast to the moderate La Niña levels anticipated before. The lowering of our earlier outlook is also supported by the July trade wind speed - which is a good indicator of seasonal hurricane activity - being close to norm. Despite this reduction, and with uncertainties remaining, there is still a 71% likelihood that in terms of the ACE Index 2016 will be the most active hurricane season since 2012.

Atlantic ACE Index and System Numbers in 2016*

<table>
<thead>
<tr>
<th>TSR Forecast (±FE)</th>
<th>ACE Index</th>
<th>Intense Hurricanes</th>
<th>Hurricanes</th>
<th>Tropical Storms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>94 (±43)</td>
<td>3 (±1)</td>
<td>7 (±2)</td>
<td>15 (±3)</td>
</tr>
<tr>
<td>66yr Climate Norm</td>
<td>1950-2015</td>
<td>101</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>10yr Climate Norm</td>
<td>2006-2015</td>
<td>94</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Forecast Skill at this Lead</td>
<td>1980-2015</td>
<td>53%</td>
<td>43%</td>
<td>55%</td>
</tr>
</tbody>
</table>

* These numbers include hurricane Alex which formed in January 2016.

Key:
ACE Index = Accumulated Cyclone Energy Index = Sum of the Squares of 6-hourly Maximum Sustained Wind Speeds (in units of knots) for all Systems while they are at least Tropical Storm Strength. ACE Unit = \(10^4\) knots\(^2\).

- Intense Hurricane = 1 Minute Sustained Wind > 95 kts = Hurricane Category 3 to 5.
- Hurricane = 1 Minute Sustained Wind > 63 kts = Hurricane Category 1 to 5.
- Tropical Storm = 1 Minute Sustained Winds > 33 kts.
- Forecast Skill = Percentage improvement in mean square error over running 10-year prior climate norm from replicated real time forecasts 1980-2015.

There is a 27% probability that the 2016 Atlantic hurricane season ACE index will be above-average (defined as an ACE index value in the upper tercile historically (>118)), a 46% likelihood it will be near-normal (defined as an ACE index value in the middle tercile historically (66 to 118) and a 27% chance it will be below-normal (defined as an ACE index value in the lower tercile historically (<66)). The 66-year period 1950-2015 is used for climatology.

Key:
Terciles = Data groupings of equal (33.3%) probability corresponding to the upper, middle and lower one-third of values historically (1950-2015).

- Upper Tercile = ACE index value greater than 118.
- Middle Tercile = ACE index value between 66 and 118.
- Lower Tercile = ACE index value less than 66.
ACE Index & Numbers Forming in the MDR, Caribbean Sea and Gulf of Mexico in 2016

<table>
<thead>
<tr>
<th>TSR Forecast (±FE)</th>
<th>2016</th>
<th>76 (±42)</th>
<th>2 (±1)</th>
<th>5 (±2)</th>
<th>10 (±2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66yr Climate Norm</td>
<td>1950-2015</td>
<td>79</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>10-yr Climate norm</td>
<td>2006-2015</td>
<td>79</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Forecast Skill at this Lead</td>
<td>1980-2015</td>
<td>49%</td>
<td>45%</td>
<td>65%</td>
<td>67%</td>
</tr>
</tbody>
</table>

The Atlantic hurricane Main Development Region (MDR) is the region 10°N-20°N, 20°W-60°W between the Cape Verde Islands and the Caribbean Lesser Antilles. A storm is defined as having formed within this region if it reached at least tropical depression status while in the area.

There is a 36% probability that the 2016 Atlantic hurricane season ACE index will be above-average (defined as an ACE index value in the upper tercile historically (>91)), a 43% likelihood it will be near-normal (defined as an ACE index value in the middle tercile historically (42 to 91)) and a 21% chance it will be below-normal (defined as an ACE index value in the lower tercile historically (<42)). The 66-year period 1950-2015 is used for climatology.

USA Landfalling ACE Index and Numbers in 2016

<table>
<thead>
<tr>
<th>TSR Forecast</th>
<th>2016</th>
<th>1.9</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>66yr Climate Norm</td>
<td>1950-2015</td>
<td>2.3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10yr Climate Norm</td>
<td>2006-2015</td>
<td>1.6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Forecast Skill at this Lead</td>
<td>1980-2015</td>
<td>26%</td>
<td>8%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Key: ACE Index = Accumulated Cyclone Energy Index = Sum of the Squares of hourly Maximum Sustained Wind Speeds (in units of knots) for all Systems while they are at least Tropical Storm Strength and over the USA Mainland (reduced by a factor of 6). ACE Unit = x10^4 knots^2.

USA landfalling intense hurricanes are not forecast since we have no skill at any lead.

There is a 37% probability that in 2016 the USA landfalling ACE index will be above average (defined as a USA ACE index value in the upper tercile historically (>2.49)), a 31% likelihood it will be near-normal (defined as a USA ACE index value in the middle tercile historically (1.00 to 2.49)) and a 32% chance it will be below-normal (defined as a USA ACE index value in the lower tercile historically (<1.00)). The 66-year period 1950-2015 is used for climatology.

Caribbean Lesser Antilles Landfalling Numbers in 2016

<table>
<thead>
<tr>
<th>TSR Forecast</th>
<th>2015</th>
<th>0.8</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>66yr Climate Norm</td>
<td>1950-2015</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10yr Climate Norm</td>
<td>2006-2015</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Forecast Skill at this Lead</td>
<td>1980-2015</td>
<td>34%</td>
<td>12%</td>
<td>23%</td>
<td>22%</td>
</tr>
</tbody>
</table>

Key: ACE Index = Accumulated Cyclone Energy Index = Sum of the Squares of hourly Maximum Sustained Wind Speeds (in units of knots) for all Systems while they are at least Tropical Storm Strength and within the region 10°-18°N, 63°-60°W (reduced by a factor of 6). ACE Unit = x10^4 knots^2.

Lesser Antilles = Island Arc from Anguilla to Trinidad Inclusive.
Methodology and Key Predictors for 2016

The TSR statistical seasonal hurricane forecast model divides the North Atlantic into three regions and employs separate forecast models for each region before summing the regional hurricane forecasts to obtain an overall forecast. For two of these three regions (tropical North Atlantic, and the Caribbean Sea and Gulf of Mexico) the forecast model pools different environmental fields involving August-September sea surface temperatures (SSTs) and July-September trade wind speed to select the environmental field or combination of fields which gives the highest replicated real-time skill for hurricane activity over the prior 10-year period. The nature of this process means that the details of the seasonal forecast model can vary subtly from year-to-year and also with lead time within the same year. Separate forecast models are employed to predict the July-September trade wind speed and to predict the August-September SSTs. Finally bias corrections are employed for each predictand based on the forecast model performance for that predictand over the prior 10 years.

The main factors behind the TSR forecast for a near-average hurricane season in 2016 are the anticipated near-neutral effect of the July-September forecast trade wind at 925mb height over the Caribbean Sea and tropical North Atlantic region (7.5˚N – 17.5˚N, 30˚W – 100˚W), and the slight enhancing effect of the August-September forecast sea surface temperature for the Atlantic MDR (10˚N – 20˚N, 20˚W – 60˚W). The current forecasts for these predictors are 0.35±0.40 ms\(^{-1}\) weaker than normal - which is stronger than the early July forecast of 0.81±0.67 ms\(^{-1}\) weaker than normal (1980-2015 climatology), and 0.39±0.13˚C warmer than normal - which is slightly warmer than the early July forecast value of 0.25±0.19˚C warmer than normal (1980-2015 climatology). The July-September 2016 trade wind prediction is based on the observed July 2016 trade wind speed anomaly. The forecast skills for these predictors at this lead are 83% and 82% respectively assessed for 1980-2015. Near-neutral trade wind speed favours average vorticity and average vertical wind shear where Atlantic hurricanes form. Warmer than normal waters provide additional heat and moisture to aid hurricane formation and intensification.

The Precision of Seasonal Hurricane Forecasts

The figure below displays the seasonal forecast skill for North Atlantic hurricane activity for the most recent 13-year period between 2003 and 2015. This assessment uses the seasonal forecast values issued publicly in real-time by the three forecast centres TSR, NOAA (National Oceanic and Atmospheric Administration) and CSU (Colorado State University). Skill is assessed as a function of lead time for two measures of hurricane activity: ACE and hurricane numbers. Forecast precision is assessed using the Mean Square Skill Score (MSSS) which is the percentage improvement in mean square error over a climatology forecast. Positive skill indicates that the model performs better than climatology, while a
negative skill indicates that it performs worse than climatology. Two different climatologies are used: a fixed 50-year (1951-2000) climatology and a running prior 10-year climate norm.

It should be noted that NOAA does not issue seasonal hurricane outlooks before late May and that CSU stopped providing quantitative extended-range hurricane outlooks from the prior December in 2011. It is clear from the figure that there is little skill in forecasting the upcoming number of hurricanes from the previous December. Skill climbs slowly as the hurricane season approaches with moderate-to-good skill levels being achieved from early August. TSR was the best performing statistical seasonal forecast model in predicting ACE and hurricane numbers at all lead times for 2003-2015.

Further Information and Next Forecast

Further information about TSR forecasts and verifications may be obtained from the TSR web site http://www.tropicalstormrisk.com. This is the final TSR outlook for the 2016 North Atlantic hurricane season. TSR will issue its extended range outlook for the 2017 Atlantic hurricane season in early December 2016.

Appendix – Predictions from Previous Months

1. Atlantic ACE Index and System Numbers*

<table>
<thead>
<tr>
<th></th>
<th>ACE Index</th>
<th>Named Tropical Storms</th>
<th>Hurricanes</th>
<th>Intense Hurricanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number (1950-2015)</td>
<td>101</td>
<td>11</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Average Number (2006-2015)</td>
<td>94</td>
<td>14</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>TSR Forecasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Aug 2016</td>
<td>94 (±43)</td>
<td>15 (±3)</td>
<td>7 (±2)</td>
<td>3 (±1)</td>
</tr>
<tr>
<td>5 July 2016</td>
<td>115 (±44)</td>
<td>16 (±3)</td>
<td>8 (±2)</td>
<td>3 (±1)</td>
</tr>
<tr>
<td>27 May 2016</td>
<td>130 (±49)</td>
<td>17 (±4)</td>
<td>9 (±3)</td>
<td>4 (±2)</td>
</tr>
<tr>
<td>5 Apr 2016</td>
<td>80 (±57)</td>
<td>12 (±4)</td>
<td>6 (±3)</td>
<td>2 (±2)</td>
</tr>
<tr>
<td>16 Dec 2015</td>
<td>79 (±57)</td>
<td>13 (±5)</td>
<td>5 (±3)</td>
<td>2 (±2)</td>
</tr>
<tr>
<td>CSU Forecasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Aug 2016</td>
<td>100</td>
<td>15</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1 July 2016</td>
<td>95</td>
<td>15</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1 June 2016</td>
<td>94</td>
<td>14</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>14 April 2016</td>
<td>93</td>
<td>13</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>NOAA Forecast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 May 2016</td>
<td>60-130</td>
<td>10-16</td>
<td>4-8</td>
<td>1-4</td>
</tr>
<tr>
<td>UK Met Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 May 2016</td>
<td>129</td>
<td>15</td>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>

* These numbers include hurricane Alex which formed in January 2016.

2. MDR, Caribbean Sea and Gulf of Mexico ACE Index and Numbers

<table>
<thead>
<tr>
<th></th>
<th>ACE Index</th>
<th>Named Tropical Storms</th>
<th>Hurricanes</th>
<th>Intense Hurricanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number (1950-2015)</td>
<td>79</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Average Number (2006-2015)</td>
<td>79</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>TSR Forecasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Aug 2016</td>
<td>76 (±42)</td>
<td>10 (±2)</td>
<td>5 (±2)</td>
<td>2 (±1)</td>
</tr>
<tr>
<td>5 July 2016</td>
<td>98 (±41)</td>
<td>11 (±2)</td>
<td>6 (±2)</td>
<td>3 (±2)</td>
</tr>
<tr>
<td>27 May 2016</td>
<td>111 (±44)</td>
<td>12 (±3)</td>
<td>7 (±2)</td>
<td>4 (±2)</td>
</tr>
<tr>
<td>5 Apr 2016</td>
<td>65 (±53)</td>
<td>8 (±3)</td>
<td>4 (±2)</td>
<td>2 (±2)</td>
</tr>
</tbody>
</table>
3. US ACE Index and Landfalling Numbers

<table>
<thead>
<tr>
<th>US Landfalling Numbers 2016</th>
<th>ACE Index</th>
<th>Named Tropical Storms</th>
<th>Hurricanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number (1950-2015)</td>
<td>2.3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Average Number (2006-2015)</td>
<td>1.6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TSR Forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Aug 2016</td>
<td>1.9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5 July 2016</td>
<td>2.0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>27 May 2016</td>
<td>2.2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5 Apr 2016</td>
<td>1.3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

4. Lesser Antilles ACE Index and Landfalling Numbers

<table>
<thead>
<tr>
<th>Lesser Antilles Landfalling Numbers 2016</th>
<th>ACE Index</th>
<th>Named Tropical Storms</th>
<th>Hurricanes</th>
<th>Intense Hurricanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number (1950-2015)</td>
<td>1.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average Number (2006-2015)</td>
<td>0.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TSR Forecasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Aug 2016</td>
<td>0.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 July 2016</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>27 May 2016</td>
<td>1.2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5 Apr 2016</td>
<td>0.7</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>