What Is the Best Lagged Predictor of the Winter North Atlantic Oscillation?

#### C. G. Fletcher and M. A. Saunders

Climate Physics Group Department of Space and Climate Physics University College London, UK.

EGU 1st General Assembly, April 2004



## Talk Structure

- Motivation and Aims
- Data and Methods
- Results
- Physical Interpretation
- Summary and Conclusions



## Motivation & Aims

- What is the NAO and why predict it?
- Recent NAO prediction studies employ different:
  - Predictors
  - Predictand NAO indices
  - Assessment time periods
  - Skill measures
- Study Aims:

 To standardise these variables and judge which recent study has the best predictor of the NAO.

 To evaluate NAO prediction skill over three extended time periods (where data available).



# **Published NAO Predictors**

| Lagged Predictor               | Assessment<br>Period | Reference                |
|--------------------------------|----------------------|--------------------------|
| May North Atlantic SST (SVD)   | 1948-1998            | Rodwell & Folland (2002) |
| JJASO North Atlantic SST (PC2) | 1950-2001            | Saunders & Qian (2002)   |
| Oct Eurasian Snow Cover        | 1972-2001            | Saito et. al (2001)      |
| JJ NH Snow Cover               | 1972-2002            | Saunders et. al (2003)   |



# New Predictor: $d_x T_{60N-70N}$

#### p(T<sub>2m</sub>, NH snow cover): JJ



- Three regions of summer (JJ) subpolar air temperature significantly linked to NH snow cover (1972-2001).
- Index represents summer temperature variations associated with changes in summer snow cover:

$$d_x T = \frac{(NA + EU)}{2} - GD$$



# NAO Indices 1901-2001

| Index    | Stations                | Reference           |
|----------|-------------------------|---------------------|
| CRU      | Gibraltar – Iceland     | Jones et. al (1997) |
| Hurrell  | Ponta Delgada – Iceland | Hurrell (1995)      |
| MSLP PC1 | n/a                     | Hurrell (1995)      |



#### NAO Indices 1901-2001



## Hindcast Methodology

- Assessment periods:
  - 1900-2001
  - 1950-2001
  - 1972-2001
- Linear trend removed from all data.
- Linear regression models cross-validated using 5-year block elimination (predicted yr ± 2-yrs).
- Hindcasts referenced against fixed climatology.



#### **Dual Skill Assessment**

Pearson correlation skill score:

 $r(NAO_{obs}, NAO_{pred})$ 

Mean-square skill score (WMO Standard):

$$MSSS = \left(1 - \frac{MSE_{PRED}}{MSE_{CLIM}}\right) \times 100\%$$

 Significance estimated using temporal randomisation and resampling, with correction for serial correlation.



# Results

| Period    | Lagged Predictor         | Dataset          | CRUI        | NAO DJF   | Hurrell     | NAO DJF   | MSLP        | PC1 DJF   |
|-----------|--------------------------|------------------|-------------|-----------|-------------|-----------|-------------|-----------|
|           |                          |                  | r           | MSSS      | r           | MSSS      | r           | MSSS      |
| 1900-2001 | May SST (SVD)            | Had              | 0.19        | 3         | 0.20        | <u>3</u>  | 0.20        | 3         |
|           | JJASO SST (PC2)          | Had              | 0.19        | 3         | 0.21        | 4         | 0.17        | 2         |
|           | JJ d <sub>x</sub> T      | CRUTEM2          | 0.18        | 2         | 0.24        | 5         | 0.21        | 4         |
|           | MJJAS $d_x T$            | CRUTEM2          | <u>0.26</u> | <u>6</u>  | <u>0.31</u> | <u>9</u>  | <u>0.28</u> | <u>7</u>  |
|           | <b>Oct EU Snow Cover</b> | <b>Brown/Rut</b> | 0.13        | 1         | 0.08        | 0         | <u>0.28</u> | <u>7</u>  |
| 1950-2001 | May SST (SVD)            | Had              | 0.29        | <u>8</u>  | <u>0.37</u> | <u>13</u> | 0.34        | 11        |
|           | JJASO SST (PC2)          | NCEP             | 0.30        | 8         | 0.31        | 9         | 0.29        | 7         |
|           | $JJ d_x T$               | NCEP             | <u>0.37</u> | <u>13</u> | 0.30        | 8         | 0.37        | 13        |
|           | MJJAS $d_x T$            | NCEP             | 0.27        | 6         | 0.26        | 6         | 0.35        | 12        |
|           | <b>Oct EU Snow Cover</b> | <b>Brown/Rut</b> | 0           | 0         | 0           | 0         | 0.15        | 0         |
| 1972-2001 | $JJ d_x T$               | NCEP             | <u>0.50</u> | <u>24</u> | 0.48        | <u>23</u> | 0.45        | 20        |
|           | $JJ d_x T$               | CRUTEM2          | <u>0.54</u> | <u>29</u> | <u>0.57</u> | <u>32</u> | <u>0.51</u> | <u>25</u> |
|           | Oct EU Snow Cover        | Rut              | 0.26        | 6         | 0.07        | 0         | 0.26        | 5         |
|           | JJ NH Snow Cover         | Rut              | <u>0.53</u> | <u>28</u> | <u>0.51</u> | <u>24</u> | <u>0.53</u> | <u>27</u> |



#### Results

| Period    | Lagged Predictor | JJASO PC2   | $JJ d_x T$  | MJJAS $d_x T$ | Oct EU Snow Cover |
|-----------|------------------|-------------|-------------|---------------|-------------------|
| 1900-2001 | May SST (SVD)    | <u>0.30</u> | <u>0.27</u> | <u>0.31</u>   | 0.09              |
|           | JJASO SST (PC2)  | -           | <u>0.54</u> | <u>0.52</u>   | 0.23              |
|           | $JJ d_x T$       | -           | -           | <u>0.80</u>   | 0.04              |
|           | MJJAS $d_x T$    | -           | -           | -             | 0.02              |
| 1950-2001 | JJASO SST (PC2)  | -           | <u>0.52</u> | <u>0.50</u>   | 0.01              |
| 1972-2001 | JJASO SST (PC2)  | -           | <u>0.52</u> | 0.35          | 0.02              |

 JJASO SST predictor significantly linked to summer d<sub>x</sub> T during all time periods.



#### **Physical Interpretation**



#### Aug u700

- Variations in JJ d<sub>x</sub> T associated with significant changes in subsequent NH circulation.
- Link between JJ d<sub>x</sub> T and JJASO SST predictor suggests potential imprint on Atlantic SST and feedback to NAO.



Sep u700



#### **Physical Interpretation**



#### Aug u-winds





## Summary and Conclusions

- Thorough assessment of NAO predictability.
- Standardised skill assessments for a range of published NAO predictors over three extended time periods.
- Best predictor is gradient of summer subpolar zonal air temperature over all periods.
- Greater predictability over 100-years than thought previously.
- e-mail: cgf@mssl.ucl.ac.uk

