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ABSTRACT

A prime challenge for ENSO seasonal forecast models is to predict boreal summer ENSO

conditions at lead. August-September ENSO has a strong influence on Atlantic hurricane

activity, Northwest Pacific typhoon activity and tropical precipitation. However, summer ENSO

skill is low due to the spring predictability barrier during March-May. The statistical ENSO-

CLIPER (CLImatology and PERsistence) prediction model is arguably one of the more

successful ENSO seasonal forecast models to date. The sensitivities of the CLIPER model to

teleconnected predictor averaging period (1, 2, 3, 4, 5 and 6 months; standard CLIPER uses only

3 months) and to the variance factor used during the optimal combination of predictors (1%,

2.5% and 5% improvement factors; standard CLIPER uses only the 2.5% factor) are examined.

A 'Consolidated' ENSO-CLIPER model is defined as the mean of an ensemble of 18 models built

using these 6 averaging periods and 3 improvement factors. Comparing the August-September

1952-2002 cross-validated hindcast skill from the consolidated and standard CLIPER models

shows that the consolidated model outperforms the standard model by 10-20% in absolute

percentage mean square error improvement over climatology at all leads from 2 to 6 months for

all the main ENSO indices (3, 3.4 and 4). The consolidated CLIPER August-September 51-year

hindcast skill is also positive to 97.5% confidence at leads out to 4 months (early April) for all

ENSO indices. Optimisation of the consolidated CLIPER model may lead to further skill

improvements.
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1. Introduction

The predictability of El Niño Southern Oscillation (ENSO) SSTs has received considerable

research over the last two decades. During the 1997-98 strong El Niño and subsequent 1998

moderate La Niña 15 dynamical and statistical ENSO seasonal forecast models were in real-time

operation (see Barnston et al 1999; Landsea and Knaff 2000 for details and inter-comparisons of

model performance). Most ENSO prediction models produce useful forecasts at leads out to 6

months when skill is assessed over all seasons (Kirtman et al 2002). However, the predictability

of ENSO has a strong seasonal cycle: it is relatively easy to predict boreal winter ENSO

conditions from boreal summer but it is difficult to predict boreal summer ENSO conditions

from boreal winter and spring. The decrease in forecast skill through the months of March-May

is known as the ‘spring predictability barrier’. This phenomenon was reported first by Walker

and Bliss (1932) who observed that the Southern Oscillation had least persistence across the

March-May season. Subsequent studies have documented the ENSO spring predictability barrier

in detail (see Torrence and Webster (1998) for a recent review).

Improved seasonal predictions of boreal summer ENSO conditions would bring sound

socio-economic benefits. August-September ENSO has a strong influence on Atlantic, US and

Caribbean  hurricane activity (eg Gray 1984; Bove et al 1998; Saunders et al 2000) which peaks

between August and October, Northwest Pacific typhoon activity (Chan 1985; Saunders et al

2000) which peaks between July and October and patterns of boreal summer tropical

precipitation (eg Ropelewski and Halpert 1987; Dai and Wigley 2000). The ability to skilfully

predict seasonal hurricane/typhoon activity and seasonal rainfall at longer range would benefit

society, business and government by reducing the risk and uncertainty associated with the year-

to-year variability in the incidence of such climatic events and conditions.
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The statistical ENSO-CLIPER (CLImatology and PERsistence) prediction model is

arguably one of the more successful ENSO seasonal forecast models to date (Kerr 2000). ENSO-

CLIPER was developed by Knaff and Landsea (1997) as a “no skill” forecast baseline for

comparison with more sophisticated dynamical ENSO prediction models. However, ENSO-

CLIPER is relatively sophisticated for an empirical model (Barnston, personal communication,

2000). It is a statistical model based entirely on the optimal combination of persistence, month-

to-month trend of initial conditions and climatology. The formulation of the ENSO-CLIPER

model provides scope for modifying its structure. This paper aims to assess the sensitivity of the

model’s skill to changes in the model specification.  Previous studies (Unger et al 1996; Kirtman

et al 2002; Mason and Mimmack 2002) indicate that ENSO predictive skill may be improved by

combining forecasts made with different predictive models.  Here we investigate if the skill of

the standard ENSO-CLIPER model can be improved by combining – or ‘consolidating’ -

hindcasts made with different structural CLIPER variants.

The paper is structured as follows. Section 2 reviews briefly the standard ENSO-CLIPER

model, describes how hindcast skill and uncertainty are calculated, and details the data sets

employed. Section 3 presents results for August-September hindcast skill 1952-2002 as a

function of monthly lead out to 10 months for each ENSO Index region (3.4, 3, 4, and 1+2).

These skills are given for the standard ENSO-CLIPER model and its temporal stability, for the

ENSO-CLIPER model formulated using different values in three sensitivity factors, and for the

skill improvement over the standard model obtained when hindcasts from different ENSO-

CLIPER model variants are combined into a ‘consolidated’ ENSO-CLIPER model hindcast.

These results are discussed in section 4 and conclusions are drawn in section 5.
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2. Methodology

2.1. Standard ENSO-CLIPER model

A detailed description of the standard ENSO-CLIPER model methodology is provided by

Knaff and Landsea (1997) and need not be repeated here.  In summary, there are 14 potential

predictors available to the model. These predictors are listed by ENSO index region and number

in Table 1 and may be categorised as follows:

A) Persistence of predictand SST anomaly (1, 3 and 5-month means). Predictor numbers 1-3.

B) Trend of predictand SST anomaly (1, 3 and 5-month means). Predictor numbers 4-6.

C) Initial condition of teleconnected predictor (3-month mean). Predictor nos 7, 9, 11 and 13.

D) Trend of teleconnected predictor (3-month mean). Predictor numbers 8, 10, 12 and 14.

Each predictor which correlates with the predictand to the 5% significance level enters a

predictor pool from which a leaps-and-bounds (L&B) algorithm (Furnival and Wilson 1974)

estimates the optimal combination of N = 1, 2, ...14 predictors.  The selected model is the one

with the largest N that explains at least 2.5% more variance than the N-1 predictor model.  This is

subject to the caveat that only one of the 1, 3 and 5-month mean predictors in each of the

categories (A) and (B) may be selected.  If a satisfactory predictor model can be found,

multivariate linear regression is applied to produce the forecast; otherwise a zero anomaly is

recorded.

2.2. Cross-Validation

The standard ENSO-CLIPER model was derived using a fixed training period 1952-1994.

Unfortunately, this leaves only 8 independent years (1995-2002) for model validation.
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Numerical simulations (Lloyd-Hughes, unpublished research, 2003) indicate that at least 50

forecast-observation pairs are required for a realistic skill estimate.  Previous studies of ENSO

predictability (e.g. Mason and Mimmack 2002; Kirtman et al 2002; Latif et al 1998) have sought

to ameliorate this problem by pooling predictions of different seasons at a given lead.  However,

this is always at the expense of statistical independence. A cross-validated approach (Wilks

1995) is adopted here to extend the validation period to 51 years (1952-2002).  At each step a

new model is formulated trained on all data excluding a 5 year block centred on the year of

interest.  This block is tapered at the time series ends. Block elimination is employed to minimise

potential skill inflation which might arise from the multi-annual persistence of ENSO conditions.

The choice of 5 years follows from the frequency spectrum of the ENSO signal which shows a

dominant peak in periodicity at about 4 years (Rasmusson and Carpenter 1982).

Forecast lead time is defined according the convention of the World Meteorological

Organization (WMO 2002) where a zero lead forecast is one which employs data up to the end

of the month immediately prior to the forecast period starting i.e. predictions issued at the end of

July for conditions in August-September are said to be issued at zero lead.

2.3. Skill and uncertainty

As a stringent measure of hindcast skill we use the skill metric recommended by the World

Meteorological Organisation for verification of deterministic seasonal hindcasts (WMO 2002).

This is the percentage improvement in mean square error over a climatological hindcast, referred

to as the mean square skill score, MSSS. This skill measure is defined as follows:

           MSSS
MSE

MSE

f

cl
= −1              (1)
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are respectively the mean squared error of the hindcasts and the mean squared error of

climatology hindcasts. Here x̂i and xi are respectively the hindcast and observed anomaly values

for each of the n = 51 years. The climatology used here is the 51-year (1952-2002) average.

Model skill is compared against ordinary persistence skill for the standard ENSO-CLIPER

model and its temporal stability, and for the ENSO-CLIPER model formulated using different

values of three sensitivity factors. Persistence is calculated over the same length interval as the

predictand period (WMO 2002). For example, the ordinary persistence at a lead of 1 month for

the August-September target predictand is calculated as the mean anomaly over the prior two-

month period May-June.

Confidence intervals are computed around the MSSS skill values using the bootstrap method

(Efron and Gong 1983).  This involves randomly selecting with replacement, 51 years (in this

case) of actual data together with the associated predicted and climatological hindcasts.  Upon

calculating the MSSS skills and repeating many times, a distribution of skill values is obtained

from which a 95% two-tailed confidence interval can be readily obtained. This confidence

interval means there is a 95% probability that the skill computed over the 51 year period will lie

within this uncertainty window. The root mean square skill score (RMSSS) is also considered and

is calculated in a way identical to (1) but with the insertion of the root mean square error in place

of the MSE.  RMSSS places less weight on correct prediction of extremes and so provides a

useful comparison to the MSSS.

Fully cross-validated MSSS with one year at a time withheld can be decomposed (Murphy

1988) into temporal, amplitude and bias errors as follows:



8

        MSSS
s

s
r

s

s

E x E x

s
n

n
n

n
x

x
x x

x

x x

= −








 −

−[ ]







 + −

−












+ −

−








2
2 1

1
1

2 1
1

2 2

2 2
ˆ

ˆ ,
ˆ

ˆ

( ) ( )
             (2)

Here sx̂  and sx  are respectively the sample standard deviations of the hindcast and observed

values, rx xˆ ,  is the product moment correlation of the hindcasts and observations, and   E L

represents the expectation value. Although Equation (2) is not exact when block elimination is

employed, the basic decomposition result will hold.  The first three terms in the expansion relate

to phase errors (through the correlation), amplitude errors (through the ratio of the hindcast to the

observed variances) and the overall bias error. The contribution from each of these terms to the

skill improvement afforded by the consolidated ENSO-CLIPER model is considered in section 4.

2.4. Data

The ENSO indices and Southern Oscillation Index (SOI) data employed in this study are

supplied by the US Climate Prediction Center. Although these data begin in 1950 our first cross-

validated hindcast is for August-September 1952.  The data in 1950 and 1951 are reserved to

compute the 5 month trends in predictor categories (A) and (B) at the longest leads.

3. Results

3.1. Standard ENSO-CLIPER cross-validated hindcasts

The standard ENSO-CLIPER model cross-validated hindcast skills for predicting the

August-September Niño 1+2, 3, 3.4 and 4 indices 1952-2002 are shown in Figure 1.  Skills are

shown as a function of monthly lead out to 10 months (prior October). MSSS decays gradually
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for all indices from ~90% at zero lead to ~20% at a lead of 4 months.  Skill attributable to

persistence, whilst initially similar to that of the standard ENSO-CLIPER model, decays more

rapidly and (with the exception of Niño 1+2) is always negative at 4 months lead. For the

August-September (henceforth AS) Niño 3, 3.4 and 4 indices the standard CLIPER model

provides the largest (~20%) absolute improvement in MSSS over persistence at leads of 3 and 4

months.  The standard ENSO-CLIPER model skill is zero at leads of 5 months and greater. This

is a direct consequence of the model formulation since when no predictors are found (as tends to

be the case at the longer leads) no hindcast is made resulting in a zero MSSS. The same is not

true for persistence which is free to yield wildly inaccurate hindcasts. The slight improvement in

persistence skill at the longest leads is noteworthy.  This is an artefact of the M S S S

decomposition, which as shown in Equation (2), contains a term penalising bias.  Hindcast bias

will be coupled to the annual cycle and is expected to be minimised at 12 months lead.

Confidence in the skill estimates for the standard ENSO-CLIPER model varies with lead.

The 95% confidence interval grows from ~10% absolute width at zero lead to 30-60% width at

leads of 3-6 months before settling back to ~20% width at longer leads.  Thus there is confidence

of high skill at short lead and of no skill at long lead.  Overall, AS Niño 4 is the best predicted

index with model hindcast MSSS skill positive to 97.5% confidence at leads out to 4 months or

early April and better than persistence at all leads.  These findings concur with Barnston and

Ropelewski (1992) who reported an increase in ENSO forecast skill from east to west across the

Pacific Ocean.

3.2.  Temporal stability

Analyses were performed on the sub-periods 1952-1975 and 1976-2002 to assess the

temporal stability of the standard ENSO-CLIPER model AS hindcast skill.  These results are
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displayed by ENSO region in Figure 2 with the early period in the left hand column and the later

period on the right.  The results for the AS Niño 3.4, 3, and 4 indices appear stable for both

CLIPER and persistence.  The variation of skill with lead is similar for both time periods and the

skill traces for each period generally fit within the other period’s 95% confidence intervals.  That

said, the hindcast skill for AS Niño 3 index is higher in the first (1952-1975) split while the

hindcast skill for the AS Niño 4 index is higher in the second (1976-2002) split. This shift

towards higher (lower) AS ENSO skill in the west (east) in recent times is reflected most by the

Niño 1+2 index. The latter shows a 60% reduction in absolute skill and a 40% reduction in

persistence at leads of 3-5 months between 1952-1975 and 1976-2002.

Kirtman and Schopf (1998) found ENSO skill to be higher in periods where the predictand

variance is greatest.  Standard deviations of the AS Niño 1+2 index for the first and second splits

are 1.0 °C and 1.2 °C respectively.  Thus, a change in variance can not explain the change in

skill. Examination of the hindcast time series (not shown) reveals that the reduction in the Niño

1+2 skill may arise from the poor prediction of the 1997 El Niño, and a mis-prediction of

positive conditions for the summer of 1992 when in reality neutral conditions prevailed. With

these years eliminated, the skills in the second split show a much closer resemblance to those in

the first.

The temporal splits in Figure 2 show that the 95% skill confidence intervals for the Niño 3

and Niño 1+2 indices are far wider in the second split than the first.  Wang et al. (2000) found

greater sensitivity in skill for splits of Niño 3 than Niño 4.  This was attributed to the increase in

SST variance as the equatorial Pacific is traversed from west to east.  A similar explanation

combined with the poor prediction of the 1997 El Niño may account for the flaring of the
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confidence intervals here.  However, caution must be applied in interpreting skill estimates based

on a sample of just 25 years.

3.3 Sensitivity to significance level

The sensitivity of the standard CLIPER model to the 5% significance level used to screen

potential predictors was assessed in terms of MSSS.  Comparisons were made between models

screened at significance levels of 1%, 5% and 10% (all other restrictions being left unchanged).

Results for each ENSO region are shown in Figure 3a.  For completeness each panel also

includes the standard persistence skill from Figure 1 and the MSSS from a ‘consensus’ model

defined as the skill from the average of the hindcasts made with the three individual significance

levels. It is clear that the predictor screening significance level has little effect upon the 1951-

2002 model performance, changing it at best by ~10%.  This result might be expected since poor

predictors will be rejected at the subsequent leaps-and-bounds (L&B) predictor optimisation

stage.  The main advantage of predictor screening is to increase computation efficiency.  Each

reduction in the number of potential predictors passed to the L&B algorithm yields a saving of at

least 6 floating point operations (Furnival and Wilson 1974). Figure 3a also shows that, in

general, the consensus model outperforms the individual significance level models.

3.3. Sensitivity to PVE improvement factor

Changes in the MSSS 1952-2002 resulting from variation of the PVE (percentage of

variance explained) improvement factor passed to the L&B algorithm in the standard CLIPER

model were investigated for PVE factors of 1%, 2.5% and 5%. These are shown in Figure 3b.

Once again, the remaining restrictions were left unchanged.  With the exception of the Niño 3.4

index at leads of 2-4 months where MSSS differences of 20% are seen, the model skill is found to
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be insensitive to the PVE improvement factor. Higher values of the improvement factor were

also investigated. In general these resulted in a single predictor model since a further predictor

could not be found to provide the required leap in PVE.

3.4. Sensitivity to averaging period

The final CLIPER sensitivity restriction investigated was the averaging period for the

teleconnected ENSO initial condition and trend predictors (predictor categories (C) and (D) in

section 2.1).  Figure 3c shows skill plots for each region constructed using models built

separately using 1, 3 and 6 month averages of the teleconnected predictors. Again other

sensitivity factors were left unchanged. The results display a similar pattern to Figure 3b with

sensitivity limited to Niño 3.4 at leads of 2-3 months where MSSS differences approaching 30%

are seen. As with Figure 3a, the consensus model generally outperforms the models built with an

individual averaging period.

3.5. A consolidated model

In the absence of any clear physical justification for the level of predictor screening, L&B

improvement factor or teleconnected predictor averaging period, it seems reasonable to

consolidate the hindcasts from each model into a single aggregate hindcast. A ‘consolidated’

ENSO-CLIPER model is defined as the mean of 18 ensemble model hindcasts formulated with

PVE improvement factors of 1%, 2.5% and 5% and averaging periods of 1-6 months and no

predictor screening.

The ‘consolidated’ CLIPER model 51-year cross-validated skill for the prediction of AS

ENSO for all ENSO regions is displayed in Figure 4. Skills from the standard ENSO-CLIPER

model are included for comparison (filled circles).  For all regions and at all leads it is clear that
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the consolidated model outperforms (or at worst matches) the MSSS skill of the standard

CLIPER model. The skill difference between the two models is quantified in Table 2 and

discussed below. Confidence intervals for the estimation of MSSS are similar overall for both

models but narrower for the consolidated model at leads of 0-4 months. The consolidated model

MSSS skill is positive to 97.5% confidence at leads out to 4 months or early April for all ENSO

indices (for Niño 4 and Niño 1+2 it is to leads of 5 months or early March); in comparison the

standard CLIPER MSSS skill is positive to 97.5% confidence at leads out to only 1 month for

Niño 3.4 and 2 months for Niño 1+2. The consolidated model shows similar temporal stability

(not shown) to that seen for the standard CLIPER model but with correspondingly higher skills.

Absolute differences in MSSS and RMSSS are presented in Table 2. Hindcasts from the two

models are nearly identical at zero and 1 month leads since all formulations tend to favour simple

persistence of the predictand.  Similarly, at very long leads when predictors become scarce, all

formulations tend to a zero hindcast.  It is at leads from 2 to 6 months where the consolidated

CLIPER model offers the greatest improvement over the standard CLIPER model for predicting

August-September ENSO. Assessed over the 51-year period 1952-2002 the consolidated model

provides a 10-20% absolute percentage improvement in MSSS at all leads from 2 to 6 months for

all the main ENSO index regions 3.4, 3, and 4; for the 1+2 index region the improvement is

~5%. The largest 51-year improvement in MSSS is 31% for the AS Niño 3.4 region at 2 months

lead. Table 2 also shows that the skill values for improvements in root mean square error are

smaller than for MSSS. This indicates that a proportion of the consolidated model skill comes

from the successful prediction of ENSO extremes.
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4.  Discussion

Figures 3b and 3c show that the standard ENSO-CLIPER predictions of Niño 3.4 at leads of

2-3 months are sensitive to both the L&B improvement factor and to the intrinsic averaging

procedure imposed upon predictor categories C and D. Figure 5 displays histograms of the

number of times that each of the 14 predictors are used in predicting Niño 3.4 1952-2002 at a

lead 3 months for averaging periods of 1-6 months.  There is considerable variation in the model

formulation as the averaging period is changed.  As the latter increases there is shift from models

reliant upon predictors 6 and 7 to those using predictors 3, 4 and 5.  Reference to Table 1 reveals

that the dominant predictors under 1 month averaging are the 5 month trend in Niño 3.4 and the

persisted 3-month value of Niño 1+2.  When the averaging period of the teleconnected SSTs is

extended to 6 months these are rejected in favour of shorter period trends and initial conditions

of the predictand itself. It appears that teleconnected SSTs (predictors 7 through 14) only become

useful when they are computed for a period similar to that of the predictand itself.  It is notable

that predictors 11-14 are never selected in any model formulation.  This is a likely result of the

inter-correlation between the predictors and the order in which they are presented to the leaps

and bound algorithm.  In the situation where the predictor pool is inter-correlated the likelihood

of each successive predictor explaining additional variance will decrease with each additional

predictor.

The consolidated model is seen to outperform the standard ENSO-CLIPER model for all the

indices studied.  The greatest improvements are found at leads of 2-6 months which are precisely

the leads at which model instability is identified.  Averaging the separate models has the effect of

reinforcing the consensus of the individual members.  Thus, when the models are in agreement a
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sharp hindcast is issued.  Conversely, if there is no consensus the individual predictions will tend

to cancel each other out and the hindcast value will tend to zero.

Decomposition of the MSSS into temporal, amplitude and bias errors allows an assessment

of how each error term contributes to the skill improvement.  Plots of correlation and variance

ratio (not shown) follow the same pattern as found for MSSS as a whole (see Figure 4). The

consolidated model yields higher and less volatile correlations with the largest improvements

seen for Niño 4. The effect of consolidation on the amplitude ratio, whilst not as marked as for

correlation, is a general smoothing and a move towards unity.  The amplitude ratios for both

models are always less than one i.e. they under predict the observed variance in SST.  This is

apparent particularly at long leads where the hindcasts tend to the climatological value.  Bias

errors are negligible for both models and are always less than 0.1°C.

A simple method for correcting biases in the mean and variance of a hindcast is to perform

the linear regression (Déqué 2003)

          ˆ ˆ ˆ′ = = +x E x x xβ β0 1  (3)

where β0  and β1 are respectively the bias in the mean and variance of the hindcasts.  Following

the cross-validation procedure, the consolidated hindcasts were recalibrated using parameters

estimated from data excluding a 5 year block about the target year.  The revised MSSS values

show little improvement over the raw hindcasts.  Since the recalibration amounts to a linear

transformation of the hindcast values it cannot change, rx xˆ , , the product moment correlation

between the hindcast/observation pairs.  Further as noted above, the hindcast bias is negligible.

Thus, the only scope for improvement in MSSS arises from adjustment of the hindcast variance.

Given the minimal improvement in MSSS post recalibration, it is concluded that there is no
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significant bias in the consolidated hindcast variance, and thus the remaining unexplained

variance must be attributable to factors outside of the model and/or to non-linear interactions.

Neither the standard nor the consolidated ENSO-CLIPER model is found to be skillful prior

to March (lead of 5 months), this corresponding to the onset of the ‘spring predictability barrier’

(Torrence and Webster 1998).  The likely failing of the models results from their heavy reliance

(by design) on persistence which often breaks down during this time of the year.  The inclusion

of long-term trends is insufficient to predict phase changes from winter into summer.

Optimisation of the consolidated CLIPER model may lead to further skill improvements.

The model presented here (defined as the mean of an ensemble of 18 models built using 6

teleconnected predictor averaging periods and 3 PVE improvement factors) was selected from

the visual inspection of Figure 3(a-c) and for computational expediency. Improved hindcast skill

may be obtained from an optimised multi-ensemble consolidated ENSO-CLIPER model which

includes the capability to select ensemble models built (a) using predictors in categories (A) and

(B) computed over non 1, 3- and 5-month means, (b) using different predictor significance level

screening factors and (c) using more than 18 ensembles. Additional skill may also be obtainable

through the deployment of phase dependent models. Previous studies (e.g. Mason and Mimmack

2002) have found that ENSO is more predictable when in its positive phase.

5.  Conclusions

The standard ENSO-CLIPER model performs well for predicting the boreal summer Niño

1+2, 3, 3.4, and 4 indices. The 51-year (1952-2002) mean hindcast skill shows a steady but

progressive rise from the prior April with no skill before.  A concern with the standard model
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relates to its optimisation, particularly the requirement for it to obey certain restrictions.  This

study has focused on the predictor significance level test, the 2.5% improvement factor required

in the L&B component and the teleconnected predictor averaging period.  Whilst each has an

effect, it is clear that these arbitrary restrictions can be relaxed without greatly compromising the

standard ENSO-CLIPER model skill.

A consolidated hindcast built from the mean of an ensemble of 18 models formulated with

averaging periods of 1-6 months and L&B factors of 1%, 2.5% and 5% has been shown to

provide better results for all indices.  The greatest improvement is seen at leads of 2-6 months

where the new model provides up to a 30% reduction in mean square error 1952-2002.

However, it must be noted that the specific formulation of the consolidation remains arbitrary,

representing a small subset of all the possible CLIPER formulations and thus may be far from

optimal.  Decomposition of the MSSS into correlation, variance ratio and bias shows that the

consolidated model also provides superior predictions of the timing and amplitude of ENSO

events compared to the standard CLIPER model.

This investigation has focused on the predictability of summer ENSO conditions. Ongoing

research will extend the consolidated ENSO-CLIPER results to other seasons and will compare

hindcast skill performance and model versatility (ie range of predictand periods, range of

forecast lead times and speed of forecast/hindcast computation) to that achieved by leading

dynamical ENSO prediction models.
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Figure Captions

Figure 1. Cross-validated hindcast skill from the standard ENSO-CLIPER model for predicting

the August-September Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads out to 10

months. The skill measure used is the mean square skill score (MSSS) defined as the percentage

improvement in mean square error over a hindcast of zero anomaly; the climatology being 1952-

2002. The grey band is a bootstrapped estimate of the 95% confidence interval for the skill

measure. The skill and uncertainty from standard persistence are shown by the filled circles and

error bars.

Figure 2.  As Figure 1 but for the sub periods 1952-1975 (left column) and 1976-2002 (right

column).

Figure 3a. The sensitivity of the standard ENSO-CLIPER model cross-validated hindcast skill to

the significance level imposed during predictor screening for the prediction of August-September

Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads to 9 months. The ‘consensus’ skill

refers to the average of the three hindcasts obtained using significance levels of 1%, 5% and

10%. The standard persistence skill from Figure 1 is included for reference.

Figure 3b. The sensitivity of the standard ENSO-CLIPER model cross-validated hindcast skill

to the PVE improvement factor passed to the leaps and bounds algorithm for the prediction of

August-September Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads to 9 months. The

‘consensus’ skill refers to the average of the three hindcasts obtained using leaps and bounds

improvement factors of 1%, 2.5% and 5%.
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Figure 3c. The sensitivity of the standard ENSO-CLIPER model cross-validated hindcast skill to

the teleconnected predictor averaging period used in the model formulation for the prediction of

August-September Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads to 9 months. The

‘consensus’ skill refers to the average of the three hindcasts obtained using averaging periods of

1, 3 and 6 months.

Figure 4. Cross-validated hindcast skill from the consolidated ENSO-CLIPER model for

predicting the August-September Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads out

to 9 months. The skill measure used is the mean square skill score (MSSS) defined as the

percentage improvement in mean square error over a hindcast of zero anomaly; the climatology

being 1952-2002. The grey band is a bootstrapped estimate of the 95% confidence interval for

the skill measure. The skill and uncertainty from the standard ENSO-CLIPER model are shown

by the filled circles and error bars.

Figure 5. Histograms of the standard ENSO-CLIPER predictors selected for making hindcasts of

the August-September Niño 3.4 Index 1952-2002 at a lead of 3 months (early May) for models

built with teleconnected predictor averaging periods from 1 to 6 months. The predictor numbers

(1 to 14) correspond to the classification in Table1.
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TABLE 1. Predictor pools in the standard ENSO-CLIPER model for predicting the Niño
3.4, 3, 4 and 1+2 indices. IC and TR represent respectively initial condition and trend
predictors with the numeral designating whether these are 1, 3 or 5 month means as defined
by Knaff and Landsea (1997). SOI is the Southern Oscillation Index.

Predictor                                                  Predictand
Number     Niño 3.4     Niño 3     Niño 4     Niño 1+2

1 Niño 3.4 IC-1 Niño 3 IC-1 Niño 4 IC-1 Niño 1+2 IC-1
2 Niño 3.4 IC-3 Niño 3 IC-3 Niño 4 IC-3 Niño 1+2 IC-3
3 Niño 3.4 IC-5 Niño 3 IC-5 Niño 4 IC-5 Niño 1+2 IC-5
4 Niño 3.4 TR-1 Niño 3 TR-1 Niño 4 TR-1 Niño 1+2 TR-1
5 Niño 3.4 TR-3 Niño 3 TR-3 Niño 4 TR-3 Niño 1+2 TR-3
6 Niño 3.4 TR-5 Niño 3 TR-5 Niño 4 TR-5 Niño 1+2 TR-5
7 Niño 1+2 IC-3 Niño 1+2 IC-3 Niño 1+2 IC-3 Niño 3 IC-3
8 Niño 1+2 TR-3 Niño 1+2 TR-3 Niño 1+2 TR-3 Niño 3 TR-3
9 Niño 3 IC-3 Niño 3 IC-3 Niño 3 IC-3 Niño 4 IC-3

10 Niño 3 TR-3 Niño 3 TR-3 Niño 3 TR-3 Niño 4 TR-3
11 Niño 4 IC-3 Niño 3.4 IC-3 Niño 3.4 IC-3 Niño 3.4 IC-3
12 Niño 4 TR-3 Niño 3.4 TR-3 Niño 3.4 TR-3 Niño 3.4 TR-3
13 SOI IC-3 SOI IC-3 SOI IC-3 SOI IC-3
14 SOI TR-3 SOI TR-3 SOI TR-3 SOI TR-3
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TABLE 2. Absolute percentage improvement in MSSS (RMSSS) of the consolidated
ENSO-CLIPER model over the standard ENSO-CLIPER model for predicting August-
September Niño 3.4, 3, 4 and 1+2 1952-2002 as a function of monthly lead.

 Niño Lead (months)
 Index 0 1 2 3 4 5 6

3.4 0 (0) 0 (0) 31 (19) 10 (6) 7 (4) 17 (8) 12 (6)
3 0 (0) 11 (9) 7 (5) 16 (10) 15 (9) 18 (9) 18 (9)
4 0 (0) 6 (5) 18 (12) 15 (10) 26 (16) 23 (12) 7 (4)

1+2 2 (3) 2 (3) -5 (-4) 19 (11) 7 (4) 7 (4) 1 (1)
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 Cross-validated hindcast skill from the standard ENSO-CLIPER model for predicting
the August-September Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads out to 10
months. The skill measure used is the mean square skill score (

 

MSSS

 

) defined as the percentage
improvement in mean square error over a hindcast of zero anomaly; the climatology being 1952-
2002. The grey band is a bootstrapped estimate of the 95% confidence interval for the skill
measure. The skill and uncertainty from standard persistence are shown respectively by the filled
circles and error bars.
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  As Figure 1  but  for  the  sub  periods  1952-1975  (left  column)  and 1976-2002 
(right column).
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 The sensitivity of the standard ENSO-CLIPER model cross-validated hindcast skill to
the significance level imposed during predictor screening for the prediction of August-September
Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads to 9 months. The ‘consensus’ skill refers
to the average of the three hindcasts obtained using significance levels of 1%, 5% and 10%. The
standard persistence skill from Figure 1 is included for reference.
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 The sensitivity of the standard ENSO-CLIPER model cross-validated hindcast skill to
the PVE improvement factor passed to the leaps and bounds algorithm for the prediction of August-
September Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads to 9 months. The
‘consensus’ skill refers to the average of the three hindcasts obtained using leaps and bounds
improvement factors of 1%, 2.5% and 5%. 
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August-September Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads to 9 months. The
‘consensus’ skill refers to the average of the three hindcasts obtained using averaging periods of 1,
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 Cross-validated hindcast skill from the consolidated ENSO-CLIPER model for
predicting the August-September Niño 3.4, 3, 4 and 1+2 indices 1952-2002 at monthly leads out
to 9 months. The skill measure used is the mean square skill score (

 

MSSS

 

) defined as the percentage
improvement in mean square error over a hindcast of zero anomaly; the climatology being 1952-
2002. The grey band is a bootstrapped estimate of the 95% confidence interval for the skill
measure. The skill and uncertainty from the standard ENSO-CLIPER model are shown
respectively by the filled circles and error bars.
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  Histograms of the standard ENSO-CLIPER predictors selected for making hindcasts of
the August-September Niño 3.4 Index 1952-2002 at a lead of 3 months (early May) for models built
with teleconnected predictor averaging periods from 1 to 6 months. The predictor numbers (1 to
14) correspond to the classification in Table1. 


