GLOBAL WARMING AND EXTREME WEATHER EVENTS

Dr Mark Saunders

Benfield Hazard Research Centre Department of Space and Climate Physics University College London

Panic Attack: Our Obsession With Risk The Royal Institution, London 9th May 2003

Are Climate Extremes Increasing?

UK Autumn 2000 Floods (Loss ~ US \$ 750 million)

River Ouse, Yorkshire, November 2000 (Courtesy Lawrence Kay)

Hurricane Georges Strikes Caribbean 1998 (Loss ~ US \$ 10 billion)

1. Hurricanes

Trends in Intense Tropical Cyclone Numbers

Northern Hemisphere 1971-2000

Atlantic Basin 1948-2000

Intense TCs = 1-min Sustained Winds > 73 mph Super Intense TCs = 1-min Sustained Winds > 110 mph

Atlantic Hurricane Predictors JAS 925mb Wind and SST Anomalies: Active – Inactive Years 40 35 30

Hurricane Numbers 1950-2001 Tropical Atlantic, Caribbean Sea and Gulf

Future Projections for Tropical Atlantic, Caribbean and Gulf <u>Hurricane</u> Numbers

- The number of Atlantic, US and Caribbean landfalling hurricanes may rise slowly due to global warming.
- However, the change in the mean number over the next 100 years is likely to be small compared to the current range of natural year-to-year variability.
- The large majority of future changes in US and Caribbean hurricane losses will continue to result from <u>natural interannual and decadal variability</u>.

2. Winter Storms

European Winter Storms

European windstorms
 caused damages of £ 1.9
 bn per year 1990-1999

Rank as the 2nd highest cause of global insured losses after US hurricanes

Porthleven, Cornwall: 4 Jan 1998 (Courtesy, Simon Burt)

North Atlantic Oscillation

+ve NAO

-ve NAO

(Figures Courtesy of Martin Visbeck, Columbia University)

(Figure Courtesy of Tim Osborn, University of East Anglia)

NAO Future Projections

(Figure Courtesy of Tim Osborn and Phil Jones, University of East Anglia)

- The number of European winter windstorms may rise slowly due to global warming but trends (if any) are likely to be small.
- The large majority of European winter storm losses in the foreseeable future will continue to result from <u>natural interannual and multi-decadal</u> <u>variability</u>.

3. Floods

UCL

UK Floods of Autumn 2000

(Figure Courtesy of Mike Blackburn, University of Reading)

Czech Floods of Summer 2002

(Figure Courtesy of Ben Lloyd-Hughes, UCL)

England and Wales Winter Rainfall 1900/1-2000/1

- Climate change will <u>slowly</u> increase rainfall and the number of floods.
- There is little direct evidence to link the recent UK (autumn 2000) and European (summer 2002) floods to global warming.
- The large majority of floods in the foreseeable future will continue to result from <u>natural climate</u> <u>variability</u> and from non-global warming factors.

4. Overall Conclusions

- The large majority of future changes in the incidence of weather extremes will continue to result from <u>natural interannual and decadal</u> <u>climate variability and not global warming</u>.
- The economic impact of global warming through its affect on extreme weather incidence
 is likely to be <u>small</u> over the next 10-20 years.