
3. DiVincenzo, D. P. Quantum computation. Science 270, 255–261 (1995).

4. Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. Experimental realization of a

quantum algorithm. Nature 393, 143–146 (1998).

5. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

6. Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-

Cooper-pair box. Nature 398, 786–788 (1999).

7. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

8. Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring algorithm using

nuclear magnetic resonance. Nature 414, 883–887 (2001).

9. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

10. Leuenberger, M. N., Loss, D., Poggio, M. & Awschalom, D. D. Quantum information processing with

large nuclear spins in GaAs semiconductors. Phys. Rev. Lett. 89, 207601 (2002).

11. Taylor, J. M., Marcus, C. M. & Lukin, M. D. Long-lived memory for mesoscopic quantum bits. Phys.

Rev. Lett. 90, 206803 (2003).

12. Levitt, M. H. Spin Dynamics (Wiley, New York, 2002).

13. Wald, K. R., Kouwenhoven, L. P., McEuen, P. L., van der Vaart, N. C. & Foxon, C. T. Local dynamic

nuclear polarization using quantum point contacts. Phys. Rev. Lett. 73, 1011–1014 (1994).

14. Gammon, D. et al. Nuclear spectroscopy in single quantum dots: nanoscopic Raman scattering and

nuclear magnetic resonance. Science 277, 85–88 (1997).

15. Kikkwawa, J. M. & Awschalom, D. D. All-optical magnetic resonance in semiconductors. Science 287,

473–476 (2000).

16. Machida, T., Yamazaki, T., Ikushima, K. & Komiyama, S. Coherent control of nuclear-spin system in a

quantum Hall device. Appl. Phys. Lett. 82, 409–411 (2003).

17. Yusa, G., Hashimoto, K., Muraki, K., Saku, T. & Hirayama, Y. Self-sustaining resistance oscillations:

Electron-nuclear spin coupling in mesoscopic quantum Hall devices. Phys. Rev. B 69, 161–302 (2004).

18. Salis, G., Awschalom, D. D., Ohno, Y. & Ohno, H. Origin of enhanced dynamic nuclear polarization

and all-optical nuclear magnetic resonance in GaAs quantum wells. Phys. Rev. B 64, 195304 (2001).

19. Eickhoff, M., Lenzman, B., Flinn, G. & Suter, D. Coupling mechanisms for optically induced NMR in

GaAs quantum wells. Phys. Rev. B 65, 125301 (2002).

20. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ.

Press, Cambridge, 2003).

21. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-photon Interactions: Basic Processes and

Applications 488–489 (Wiley, New York, 1998).

22. Wokaun, A. & Ernst, R. R. Selective excitation and detection in multilevel spin systems: Application of

single transition operators. J. Chem. Phys. 67, 1752–1758 (1977).

23. Leuenberger, M. N. & Loss, D. Grover algorithm for large nuclear spins in semiconductors. Phys. Rev.

B 68, 165317 (2003).

24. Ahn, J., Weinacht, T. C. & Bucksbaum, P. H. Information storage and retrieval through quantum

phase. Science 287, 463–465 (2000).

25. Grover, L. K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev.

Lett. 79, 4709–4712 (1997).

26. Kronmüller, S. et al. New resistance maxima in the fractional quantum Hall effect regime. Phys. Rev.

Lett. 81, 2526–2529 (1998).

27. Hashimoto, K., Muraki, K., Saku, T. & Hirayama, Y. Electrically controlled nuclear spin polarization

and relaxation by quantum-Hall states. Phys. Rev. Lett. 88, 176601 (2002).

28. Smet, J. H. et al. Gate-voltage control of spin interactions between electrons and nuclei in a

semiconductor. Nature 415, 281–286 (2002).

Acknowledgements The authors are grateful to T. Fujisawa, Y. Tokura, S. Sasaki, K. Semba,

S. Saito, K. Ono, S. Tarucha, T. Machida, T. Ota and N. Kumada for discussions.

Competing interests statement The authors declare that they have no competing financial

interests.

Correspondence and requests for materials should be addressed to G.Y. (yusa@NTTBRL.jp) or

K.M. (muraki@will.brl.ntt.co.jp).

..............................................................

Seasonal prediction of hurricane
activity reaching the coast of
the United States
Mark A. Saunders & Adam S. Lea

Benfield Hazard Research Centre, Department of Space and Climate Physics,
University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK
.............................................................................................................................................................................

Much of the property damage from natural hazards in the United
States is caused by landfalling hurricanes1–3 —strong tropical
cyclones that reach the coast. For the southeastern Atlantic
coast of the US, a statistical method for forecasting the occur-
rence of landfalling hurricanes for the season ahead has been
reported4, but the physical mechanisms linking the predictor
variables to the frequency of hurricanes remain unclear. Here we

present a statistical model that uses July wind anomalies between
1950 and 2003 to predict with significant and useful skill the wind
energy of US landfalling hurricanes for the following main
hurricane season (August to October). We have identified six
regions over North America and over the east Pacific and North
Atlantic oceans where July wind anomalies, averaged between
heights of 925 and 400 mbar, exhibit a stationary and significant
link to the energy of landfalling hurricanes during the sub-
sequent hurricane season. The wind anomalies in these regions
are indicative of atmospheric circulation patterns that either
favour or hinder evolving hurricanes from reaching US shores.

The North Atlantic hurricane season extends from 1 June to
30 November. However, 86% of US hurricane strikes and 96% of
US intense (major) hurricane strikes in 1950–2003 occurred after
1 August5. The large year-to-year variability in the number of
hurricanes making US landfall (range zero to six since 1950)
means that skilful seasonal forecasts of activity would benefit a
spectrum of decision makers by reducing risk and uncertainty.
Seasonal hurricane forecasting was pioneered6 in the mid-1980s for
the North Atlantic. Assessments of seasonal forecast skill for US
landfalling hurricane activity have been made for the southeast US
from 1 August4 and for the whole US in September7. Work has also
examined the probability of US hurricane landfall and damage as
a function of the sign and strength of the El Niño/Southern
Oscillation (ENSO)8–11. However, with one exception4, none of
these studies has claimed skill that is significant, robust and high
enough to be practically useful. For example, the hindcast corre-
lation skill for predicting the number of US landfalling hurricanes in
September 1950–2000 is only ,0.38 (ref. 7).

Seasonal US landfalling hurricane activity is referenced usually in
terms of the numbers of tropical storms, hurricanes or intense
hurricanes making US landfall. We introduce the National Oceanic
and Atmospheric Administration’s Accumulated Cyclone Energy
(ACE) index12 as a single more appropriate measure for categorizing
‘seasonal US landfalling hurricane activity’. We call this the US ACE
index, and define it as the sum of the squares of hourly maximum
sustained wind speeds (in units of knots) from all tropical cyclones
over the US mainland (including those that have changed to extra-
tropical) that have winds of at least tropical storm strength. This
value is then reduced by a factor of 6 for compatibility with the ACE
index at sea, which is computed from wind values every 6 h (ref. 12).
The US ACE index is effectively a wind energy index indicating the
cumulative wind energy from all US-striking tropical storms,
hurricanes and intense hurricanes occurring during a given season.
We compute the US ACE index using the maximum sustained wind
speed data from the US National Hurricane Center’s North Atlantic
hurricane database13.

Our analysis also uses monthly wind data averaged between 925
and 400 mbar (about 750 to 7,000 m above sea level) from the
National Center for Environmental Prediction/National Center for
Atmospheric Research reanalysis14 during 1950–2003. The motion
of hurricanes is determined by height-averaged winds between these
levels15,16. US hurricane total (economic) and insured loss data are
obtained from ref. 3 (updated economic losses through to the end of
2003 are provided by C. W. Landsea) and from ref. 17 (insured losses
for 2000–03 are provided by the US Property Claims Service)
respectively for the period 1950–2003. All correlation coefficients
(r rank) refer to the Spearman rank correlation coefficient. All
statistical significances are two-sided values corrected for serial
autocorrelation18,19.

The US ACE index 1950–2003 is linked significantly to tropo-
spheric height-averaged wind anomalies occurring over North
America, the east Pacific and the North Atlantic both before
(July) and during the main Atlantic hurricane season. August,
September and October are the main months for landfalling
hurricane wind energy, with 82% of the annual US ACE
index occurring therein. Figure 1 displays for July (Fig. 1a) and
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August–October (Fig. 1b) the direction, magnitude and significance
of the composite difference in wind anomalies averaged between
925 mbar and 400 mbar for those years when the US ACE index is in
its upper and lower quartiles 1950–2003. The vector winds in Fig. 1
are associated with an above-median seasonal US ACE index; wind
anomalies of the opposite sign are associated with a below-median
seasonal US ACE index.

The composite difference in July height-averaged winds shows
several areas of significance. The white boxed regions in Fig. 1a
denote six areas (u1, u 2, u3, u4, u 5 and v 1, where u and v refer
respectively to zonal (east–west) and meridional (north–south)
winds) where the link between the July 925–400 mbar height-
averaged wind and the US ACE index 1950–2003 is significant
and stationary. Statistical significance is defined as a correlation
P-value of ,0.1 after correction for serial autocorrelation. Temporal
stability is defined as showing statistical significance over each sub-
period 1950–76 and 1977–2003. A prominent feature in Fig. 1a is
the anticyclonic flow anomaly associated with a strengthened and
northward displaced Bermuda high pressure area. When established
in July, this feature tends to persist and ridge westwards during

August and September to lie over the US and Canadian eastern
seaboards. This leads to on-shore wind anomalies along the US East
Coast during August–October (Fig. 1b). As these anomalies will
influence the steering of hurricanes, their presence favours an
above-median US ACE index year.

Further prominent features in Fig. 1a that favour a subsequent
above-median US ACE index are anticyclonic flow associated with
increased surface pressure over the Rocky Mountains, and oppo-
sitely directed zonal flow anomalies (u1 and u2) in the tropical east
Pacific. These latter are linked to anomalous zonal gradients in sea
surface temperature (SST) caused in part by ENSO. These
additional features combine to produce and sustain a cyclonic
flow anomaly centred over the Gulf of Mexico during August–
October (Fig. 1b). This cyclonic flow strengthens on-shore wind
anomalies over Florida and the eastern US Gulf Coast, thereby
favouring an above-median US ACE index. July height-averaged
wind anomalies opposite to those in Fig. 1a hinder subsequent US
hurricane landfall, and herald a below-median US ACE index year.

The identification of tropospheric height-averaged wind
anomalies linked significantly and stably to the upcoming US
ACE index allows the seasonal predictability of the latter to be
assessed. Predictability is computed using cross-validated hindcasts
with block elimination20,21. This procedure is applied to linear
regression models having a single wind index predictor that satisfy
the validity assumptions for ordinary least squares linear
regression22,23. These models are distinguished by the regions con-
tributing to the July height-averaged wind index. Model 1 uses a
wind index defined as u1 2 u 2 þ u3 2 u 4 þ u 5 2 v 1 with contri-
butions from all six regions. Here each u and v component refers to
the area-averaged wind anomaly (Fig. 1a) after normalization by
standard deviation. Model 2 uses u 1 2 u2 2 v1 as the wind index
with contributions from the east Pacific and North America regions
only. Model 3 uses u3 2 u4 þ u5 as the index with contributions
from the North Atlantic regions only. Skill from these three July
925–400 mbar wind index models is compared to that achievable
with perfect a priori knowledge of North Atlantic ACE activity

       

        

 

Figure 1 Tropospheric height-averaged wind anomalies linked significantly to above-

median seasonal US landfalling hurricane activity 1950–2003. The panels show wind

data for July (a) and August–October (b). Plotted is the difference in vector wind anomalies

(averaged between 925mbar and 400mbar height) between those subset years when the

US ACE index is in its upper and lower quartiles. The significance of the difference in wind

magnitude between these subset years is shown by the colour bar. Seasonal predictability

of the US ACE index is assessed using a July height-averaged wind index using the six

regions marked by white boxes in a.

Table 1 Predictive skill for the seasonal US ACE index

Predictor Period Hindcast skill and significance

MSSS (%) r rank P-value
.............................................................................................................................................................................

July 925–400 mbar wind index 1950–2003 38 0.67 ,0.001
(all regions) 1950–76 40 0.65 0.001

1977–2003 36 0.70 ,0.001
.............................................................................................................................................................................

July 925–400 mbar wind index 1950–2003 32 0.68 ,0.001
(u1 2 u2 2 v1) 1950–76 28 0.68 0.002

1977–2003 38 0.75 ,0.001
.............................................................................................................................................................................

July 925–400 mbar wind index 1950–2003 19 0.52 ,0.001
(u3 2 u4 þ u5) 1950–76 22 0.55 0.004

1977–2003 14 0.47 0.008
.............................................................................................................................................................................

Observed Atlantic total ACE index 1950–2003 18 0.49 ,0.001
1950–76 13 0.38 0.03
1977–2003 26 0.57 0.003

.............................................................................................................................................................................

Observed August–October Niño 1950–2003 0 0.29 0.05
3 SST 1950–76 0 0.26 0.12

1977–2003 3 0.31 0.12
.............................................................................................................................................................................

Table 2 Link between hindcast US ACE index and US hurricane losses

Economic loss Insured loss

Period r rank P-value r rank P-value
.............................................................................................................................................................................

1950–2003 0.48 0.003 0.48 0.003
1950–76 0.43 0.06 0.58 0.03
1977–2003 0.49 0.008 0.37 0.03
.............................................................................................................................................................................
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(model 4) and of August–October Niño 3 SST (model 5) during the
main hurricane season. The US ACE index hindcast skill is assessed
using two skill measures: the correlation (r rank) between the
hindcast and observed values, and the mean square skill score
(MSSS) defined as the percentage reduction in mean square
error of the model hindcasts compared to hindcasts made with
the 1950–2003 mean or climatology value. MSSS is the skill metric
recommended by the World Meteorological Organisation for veri-
fication of deterministic seasonal forecasts21. P-values are computed
from bootstrapped estimates of r rank.

Table 1 shows the hindcast skill from the five models described
above for different time periods. Using the July height-averaged
wind index (all regions) model, the US ACE index (landfalling
hurricane wind energy) is predictable from the 1 August start of the
main Atlantic hurricane season with a correlation skill of 0.65–0.70
and a skill improvement over climatology of 36–40%. This skill is
significant to P , 0.001 over the 1950–2003 period and to

P ¼ 0.001 over each 1950–76 and 1977–2003 sub-period. The
majority of this skill comes from 925–400 mbar winds over the
east Pacific and North America. The strength, significance and
stationarity of hindcast skill from the July wind model exceeds
(by a factor of two in strength) that achievable from knowing the
observed North Atlantic total ACE index at the hurricane season
end on 30 November. The low hindcast skill shown by the August–
October Niño 3 SST model confirms that ENSO-related wind
anomalies are more important than ENSO SST anomalies for US
hurricane seasonal predictability. A scatter plot of observed US ACE
index versus hindcast US ACE index from the July wind index (all
regions) model shows that it anticipates correctly 67% of upper and
lower tercile actual values as being upper and lower tercile. Fur-
thermore, the model anticipates correctly 94% of upper tercile
actual values as above median and 83% of lower tercile actual values
as below median.

The US ACE index hindcasts from the July wind index model
offer sound potential for socio-economic benefit. Table 2 shows that
the hindcasts are linked significantly (P , 0.01) and stably to US
hurricane economic loss 1950–2003 (ref. 3) and to US hurricane
insured loss 1950–2003 (ref. 17). For both economic and insured
losses, r rank ¼ 0.48 and P ¼ 0.003. These significant links to loss are
evident also from Table 3, which compares the hindcast US ACE
index values against economic and insured losses stratified by year
and above/below median value. For economic loss, the hindcast
model correctly anticipates the sign of 74% (40 out of 54) of the
above-median and below-median loss years. For insured loss, the
hindcast model correctly anticipates the sign of 70% (38 out of 54)
of the above-median and below-median loss years. The two-tailed
probability of obtaining the 2 £ 2 contingency table of US ACE
index hindcast and US economic loss by random chance is 0.001
based on Fisher’s exact probability test; for hurricane insured loss
the probability is 0.006.

A clear beneficiary of the above skill is the insurance industry.
Buyers and sellers of reinsurance covers can improve returns over a
period of years by up to 30% by using these forecasts24. The July
925–400 mbar wind index model performed well in real-time
operation in 2004, predicting a US ACE index in the upper quartile
for this active and damaging hurricane season (see Atlantic forecast
document dated 4th August 2004 at www.tropicalstormrisk.com).
Insurers and others would have reduced their losses in 2004 by
acting upon the forecast. A

Methods
Serial autocorrelation
We correct for serial autocorrelation to minimize the influence of time series trends and
multi-year-to-decadal signal variability on the significance of the deduced hindcast
skill18,19. We do this by computing the effective number of degrees of freedom in the
estimation of the cross-correlation by including autocorrelation coefficients in both input
time series out to lags of N/2 yr, where N is the time series length.

Significances
The significances in Fig. 1 are computed for each grid cell by selecting two random
composite sets of 14 values from the 54-yr 925–400 mbar height-averaged vector wind
time series for that grid cell, and computing the wind magnitude difference between these
random composites. The selection of values is made with replacement thereby allowing the
same value to be picked more than once in a given set. This process is repeated 10,000 times
for each grid cell. The random composite wind magnitude differences are displayed in
histogram form to give the percentage of the random sets with a wind magnitude
difference greater than the actual observed composite difference.

The significances in Tables 1 and 2 are computed by randomly shuffling the 54-yr
hindcast/observed US ACE index time series and selecting with replacement a number of
hindcast and observed US ACE index pairs corresponding to the number of degrees of
freedom after correction for serial correlation in the unshuffled time series. This process is
repeated 10,000 times. The correlation from each random set is calculated and the results
are displayed in histogram form to give the percentage of the random sets with an r rank

greater than the original hindcast r rank.

Predictor selection
The following predictor selection rule is used to select regions and wind components for
the July height-averaged wind index. The July area-averaged wind anomaly component

Table 3 Hindcast US ACE index and annual US hurricane damage

Economic losses Insured losses

Year Hindcast Loss US$ million Year Hindcast Loss US$ million
.............................................................................................................................................................................

1992 2 þ 44,014 1992 2 þ 29,597
1954 þ þ 23,302 1954 þ þ 18,259
1955 þ þ 17,548 1965 þ þ 13,922
1965 þ þ 16,888 1989 2 þ 6,845
1960 þ þ 16,236 1964 þ þ 5,885
1969 þ þ 14,584 1960 þ þ 5,707
1972 2 þ 14,258 1970 þ þ 5,522
1989 2 þ 13,705 1979 þ þ 5,160
1979 þ þ 11,489 1983 2 þ 4,729
1961 þ þ 9,536 1985 þ þ 4,298
1964 þ þ 9,377 1961 þ þ 4,202
1985 þ þ 8,834 1995 þ þ 3,710
1999 2 þ 6,346 1950 þ þ 3,701
2001 þ þ 5,579 1969 þ þ 3,568
1983 2 þ 5,395 1955 þ þ 2,946
1995 þ þ 4,957 2001 þ þ 2,667
1996 þ þ 4,635 1996 þ þ 2,514
1970 þ þ 4,439 1999 2 þ 2,430
1998 þ þ 4,414 1998 þ þ 2,044
1950 þ þ 3,732 2003 þ þ 1,775
2003 þ þ 3,580 1957 2 þ 1,422
1957 2 þ 3,251 1959 þ þ 1,214
1967 þ þ 2,726 1972 2 þ 1,157
1975 þ þ 2,336 1991 2 þ 1,117
1991 2 þ 2,279 1967 þ þ 1,073
1971 þ þ 1,612 1975 þ þ 946
1994 þ þ 1,367 2002 2 þ 648
2002 2 2 1,244 1980 2 2 343
1980 2 2 1,151 1956 þ 2 332
1974 2 2 953 1966 2 2 255
1959 þ 2 594 1984 þ 2 162
1956 þ 2 466 1976 2 2 155
1968 2 2 425 1971 þ 2 147
1976 2 2 408 1974 2 2 143
1958 2 2 296 1968 2 2 117
1951 þ 2 242 1953 þ 2 113
1966 2 2 219 1986 2 2 84
1963 þ 2 197 1952 2 2 67
1984 þ 2 173 1993 2 2 57
1973 2 2 126 1997 2 2 50
1997 2 2 123 1988 þ 2 23
1988 þ 2 116 1977 2 2 14
1981 2 2 102 1963 þ 2 5
1978 2 2 100 1987 2 2 1
1990 2 2 99 1951 þ 2 0
1993 2 2 85 1994 þ 2 0
1952 2 2 84 1981 2 2 0
1962 2 2 56 1990 2 2 0
1977 2 2 44 1973 2 2 0
1986 2 2 39 1978 2 2 0
1953 þ 2 37 2000 2 2 0
1982 2 2 36 1962 2 2 0
2000 2 2 30 1982 2 2 0
1987 2 2 18 1958 2 2 0
.............................................................................................................................................................................

The comparison is made for the time period 1950–2003. Hindcasts are from the July height-
averaged wind index model. Hurricane damage is shown separately in terms of economic and
insured losses. The yearly value of each parameter is colour-coded on the basis of whether it is
above-median (red, þ ) or below-median (blue, 2 ). Rows are stratified vertically by loss and
referenced by year. Losses are in millions of US dollars at 2003 prices and exposures.
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must be linked significantly (correlation P-value ,0.1 after correction for serial
autocorrelation) to the US ACE index over each sub-period 1950–76 and 1977–2003, and
for each year 1950 to 2003 after data excluding a 5-yr block centred on the year in question
are excluded. This rule simulates the predictor selection process in an actual forecast
situation.

Linear regression modelling
The US ACE index has a positively skewed (generalized Pareto) distribution. To satisfy the
assumptions for using ordinary least squares regression, we transform this distribution to
a normal distribution using the log(1þUS ACE index) transform. We test for normality
using the Kolmogorov–Smirnov test. The linear regression modelling is performed on
these transformed data to produce hindcasts, which are then transformed back before the
hindcast skill is computed. This procedure ensures that the observations are drawn from a
normal distribution, and that the hindcast errors are normally distributed with a mean of
zero (both requirements of linear regression modelling22,23). A one-way analysis of
variance (F-test) shows that the variance of the transformed observations and the variance
of the hindcast errors are both constant in time (a further assumption of linear regression
modelling22,23).

The regression modelling is performed with a single predictor variable (the July wind
index) rather than as a multiple regression with two or more predictor variables. Multiple
regression is found always to give lower hindcast skill, the skill reduction increasing as the
number of parameters increases. The single predictor (wind index) approach offers greater
skill through better strengthening of the predictive signals and better removal of noise.

Cross-validated hindcasts
Cross-validated hindcasts are made with block elimination20,21. The US ACE index of each
year is hindcast by training the linear regression model on all data excluding a 5 yr block
centred on the year of interest. The block is tapered at the time series ends. Block
elimination is used to minimize potential skill inflation that might arise from multi-
annual persistence. Cross-validation provides the best available estimate of forecast skill
for the 54-yr sample.

Spearman rank correlation
The Spearman rank correlation coefficient is used as a robust and resistant alternative to
the Pearson product–moment correlation coefficient22. The rank correlation is robust to
deviations from linearity in a relationship, and is resistant to the influence of outliers.
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Recent convergence between India and Eurasia is commonly
assumed to be accommodated mainly along a single fault—the
Main Himalayan Thrust (MHT)—which reaches the surface in
the Siwalik Hills of southern Nepal1–3. Although this model is
consistent with geodetic4,5, geomorphic6 and microseismic data7,
an alternative model incorporating slip on more northerly sur-
face faults has been proposed to be consistent with these data as
well8–10. Here we present in situ cosmogenic 10Be data indicating a
fourfold increase in millennial timescale erosion rates occurring
over a distance of less than 2 km in central Nepal, delineating for
the first time an active thrust fault nearly 100 km north of the
surface expression of the MHT. These data challenge the view
that rock uplift gradients in central Nepal reflect only passive
transport over a ramp in the MHT. Instead, when combined with
previously reported 40Ar–39Ar data9, our results indicate persist-
ent exhumation above deep-seated, surface-breaking structures
at the foot of the high Himalaya. These results suggest that strong
dynamic interactions between climate, erosion and tectonics
have maintained a locus of active deformation well to the north
of the Himalayan deformation front.

The central Nepalese Himalaya is a textbook example of con-
tinent–continent collision, in which the underthrusting of India has
been concentrated on several roughly east–west-trending fault
zones within a belt about 100 km wide. The northernmost of
these fault zones is the Main Central Thrust (MCT), which marks
a transition from the high-grade metamorphic Greater Himalayan
Sequence in the north to the lower-grade Lesser Himalayan
Sequence in the south. Geochronologic data indicate that the
MCT is also the oldest structure, with evidence for initial activity
on this thrust fault by 23–20 Myr ago11. More southerly structures—
the Main Boundary Thrust (MBT) and the Main Frontal Thrust
(MFT)—developed progressively in a north–south sequence, con-
sistent with observations in foreland fold and thrust belts world-
wide12 (Fig. 1a). Most researchers working in the Nepal orogen
assume that recent surface faulting has been concentrated at the
trace of the MFT, which defines the southern limit of deformation in
the Himalayan system. In this model, the MFT absorbs almost all
slip on the MHT. However, this interpretation does not provide a
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