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Forecasting US insured hurricane losses

THOMAS H. JAGGER, JAMES B. ELSNER, AND MARK A. SAUNDERS

Condensed summary

Coastal hurricanes generate huge financial losses within the insurance industry.
The relative infrequency of severe coastal hurricanes implies that empirical
probability estimates of the next big loss will be unreliable. Hurricane climatol-
ogists have recently developed statistical models to forecast the level of coastal
hurricane activity based on climate conditions prior to the season. Motivated by
the usefulness of such models, in this chapter we analyze and model a catalog of
normalized insured losses caused by hurricanes affecting the United States. The
catalog of losses dates back through the twentieth century. The purpose of this
work is to develop a preseason forecast tool that can be used for insurance
applications. Although wind speed is directly related to damage potential, the
amount of damage depends on both storm intensity and storm size. As antici-
pated, we found that climate conditions prior to a hurricane season provide
information about possible future insured hurricane losses. The models exploit
this information to predict the distribution of likely annual losses and the
distribution of aworst-case catastrophic loss aggregated over the entireUS coast.

10.1 Introduction

Coastal hurricanes are a serious social and economic concern for the United
States. Strong winds, heavy rainfall, and storm surge kill people and destroy
property. The destructive power of hurricanes rivals that of earthquakes. On
August 28, 2005, Hurricane Katrina’s winds reached 78 meters per second
(m s!1) in the central Gulf of Mexico, making it one of the strongest Atlantic
hurricanes ever recorded. Early morning on the next day, Katrina struck
Plaquemines Parish, Louisiana, with winds estimated near 65 m s!1. Katrina
caused an estimated US$38 billion (bn) in insured losses as it roared across
Louisiana, Mississippi, and Alabama.
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It is important to know the return periods for losses incurred from storms of
Katrina’s magnitude or stronger and how the return periods vary when the
climate fluctuates or changes (Elsner et al., 2006a). It is also valuable to be able
to forecast the probability of a large loss before the hurricane season. Skillful
forecasts of insured losses at lead times (forecast horizons) of 6 months or
more would certainly benefit risk managers and others who are interested in
acting on these forecasts. The rarity of severe hurricanes implies that empirical
estimates of return periods likely will be unreliable. Fortunately, extreme value
theory provides models for rare events and a justification for extrapolating
to levels that are much greater than have already been observed. Moreover,
statistical theory combined with knowledge of climate variability and its
connection to regional storminess allows forecasts of seasonal hurricane
activity.
Probability estimates of extreme hurricanes are available in the literature

(Darling, 1991; Rupp and Lander, 1996; Heckert et al., 1998; Chu and Wang,
1998), but these studies do not address the question of how hurricane prob-
abilities change with climate. This is done in Jagger et al. (2001), but the focus
is on the probability of hurricanes of any intensity and not on the probability
of the most extreme winds. Jagger and Elsner (2006) model the most extreme
hurricane winds along the US coast and show how the probability of winds
exceeding extreme thresholds changes with climate factors, including the
North Atlantic Oscillation (NAO) and the El Niño/Southern Oscillation
(ENSO).
Predictions of basin-wide Atlantic hurricane activity have been around since

the middle 1980s (Gray, 1984). Studies focusing on climate factors that influ-
ence hurricane frequency regionally (Lehmiller et al., 1997; Bove et al., 1998;
Maloney and Hartmann, 2000; Elsner et al., 2000a; Murnane et al., 2000;
Saunders et al., 2000; Jagger et al., 2001; Larson et al., 2005) are more recent.
Insights into climate conditions that affect regional hurricane activity are used
to help predict landfall activity (Lehmiller et al., 1997; Elsner and Jagger, 2004,
2006; Saunders and Lea, 2005). Preseason forecasts of the number of hurri-
canes expected to affect the coast are useful especially if they are issued with
significant lead time.
Saunders and Lea (2005) were the first to link predictions of US hurricane

activity to skillful seasonal forecasts of loss. Here we present forecast models
that can be used to directly predict the probability of a significant US financial
loss from July 1. The models combine the strategy of Jagger and Elsner (2006)
to estimate return periods with the strategy of Elsner and Jagger (2006) to
forecast US hurricane activity before the start of the hurricane season. We
begin with an examination of the normalized insured loss data and the data
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associated with climate fluctuations. We then describe our modeling strategy
and show results from a preseasonmodel that predicts the annual expected loss
and amodel that predicts the worst-case scenario over a 100-year time horizon.

10.2 Normalized insured losses: 1900–2005

The work presented in this chapter was motivated by Katz (2002), who
modeled total annual economic damage associated with hurricanes with a
compound Poisson process. The process is compound since the total number
of damaging hurricanes per year is fitted with a Poisson distribution, while the
monetary amount of damage for individual hurricanes is fitted by the log-
normal distribution. Damage totals are thus represented as a ‘‘random sum,’’
with variations in total damage being decomposed into two sources, one
attributable to variations in the frequency of events and another to variations
in the damage from individual events. Results from Katz (2002) indicate a
dependence of both hurricane occurrence and damage amount on the state of
ENSO. Our idea is similar but with the following differences. First, we use
preseason covariates to represent the climate rather than a contemporaneous
above/below normal factor. Second, we use a threshold for dividing the loss
data into small and large loss events, and third, we use simulation (random
samples) to generate the distribution of losses.
We obtained insured loss data from Collins and Lowe (2001), who have

produced a normalized record of insured losses for all hurricanes affecting the
United States between 1900 and 1999. The normalization adjusts the damage
from each hurricane to match what it would be if the storm had struck in the
year 2000. This normalization is achieved by allowing for changes in inflation,
wealth, and population, plus an additional factor, which represents a change in
the number of housing units that exceeds population growth between the year
of the loss and 2000. We extend the original Collins and Lowe (2001) data to
2005 using insured losses provided by the US Property Claims Service and
inflate all losses to reflect 2005 US dollar values. The insured loss data for
1900–2005 comprise 178 loss events. The Collins and Lowe (2001) insured loss
dataset is similar to the loss dataset of Pielke and Landsea (1998), who
estimated total economic losses attributable to hurricanes since 1900. The
rank correlation between the two annual hurricane loss time series is high, at
0.90 (1900–99).
Figure 10.1 shows the distribution and time series of insured losses over the

period 1900–2005. The histogram bars indicate the percentage of events with
losses in groups of US$1bn. The distribution is highly skewed, with 34%of the
events having losses exceeding US$1bn and 19% of the events having losses
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exceeding US$3bn. The worst loss occurred with the 1926 hurricane that
struck southeast Florida, creating an estimated insured loss adjusted to 2005
dollars of US$58.5bn. Hurricane Katrina in 2005 comes in second, with an
estimated total loss of US$38.1bn. The time series of event losses is shown as
an insert to Figure 10.1. Years with more than one loss have more than one
dot. The data display large year-to-year variability but no obvious long-term
trend, although here the data are not disaggregated into loss amount and
number of loss events. The insured loss exceedances are shown in Table 10.1.
Of the 178 loss events since 1900, 113 exceeded US$100 million (mn) in losses
and 10 of these exceeded US$10bn. The geographic distribution of losses is
shown in Figure 10.2. Plots are made for losses in four sizes, ranging from less
than US$100mn to more than US$10 bn. There does not appear to be a large
geographic variation in loss locations with loss amount, with the exception of
the largest loss amounts confined to southern exposures.
Because of the large skewness in loss values, we transform the data by using

logarithms. A logarithmic transformation of the loss data is also used in Katz
(2002). Here we use the base 10 logarithm for ease of interpretation. The
logarithm to base 10 of a US$1bn loss is equal to 9. Figure 10.3 shows the
logarithm of insured losses. The time series of log transformed annual losses
shows no significant trend, although two of the highest yearly totals occurred
in 2004 and 2005. The distribution of the logarithm of annual losses approx-
imates a normal distribution, although there is some asymmetry in the tails. A
quantile–quantile plot of the logarithm of losses against a normal distribution
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Figure 10.1. (a) Distribution of insured losses from hurricanes in the United
States (excluding Hawaii). The distribution is highly skewed, with a few
events generating very large losses. (b) Time sequence of the losses.
Individual years may have more than one loss event.
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indicates a reasonable fit and provides evidence that the distribution of indi-
vidual losses is log normal. Figure 10.3 also shows the annual number of loss
events and the distribution. Again we see no obvious trend over time. There
were three years with six loss events, with the most recent being 2004. The
observedmean rate of loss events is 1.68, with a variance that is nearly equal, at

Table 10.1. Insured loss exceedances (US
dollars adjusted to 2005)

Values are the number of events exceeding various
loss thresholds.

Exceedance number

US$ (2005) Events

1mna 177
10mn 172
100mn 113
1 bna 61
10 bn 10

aAbbreviations: mn, million; bn, billion.

–95 E –80 E –65 E 

50
 N

< $0.1 bn

30
 N

–95 E

$0.1–1 bn

–80 E –65 E 50
 N

30
 N

$1–10 bn

50
 N

30
 N

–95 E –80 E –65 E 

> $10 bn

30
 N

50
 N

–95 E –80 E –65 E

Figure 10.2. Geographic distribution of normalized insured losses from
hurricanes striking the United States between 1900 and 2005. See also Plate 22.
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1.896, consistent with the property of a Poisson distribution. A formal !2 test
indicates that there is no reason to question a Poisson distribution for the
annual number of loss events.
By examining the conditional variance, Katz (2002) estimated that about

17% of the variation in total annual damage is attributable to fluctuations in
the annual number of storms. Thus we would expect that a climate variable
that explains a portion of the fluctuation in annual number of events could be
used help predict annual losses.

10.3 Climate variations

We argue that the annual distribution of insured hurricane losses depends to
some extent on preseason climate factors. This conclusion is reasonable given
that statistical relationships betweenUS hurricane activity and climate are well
established (Bove et al., 1998; Elsner and Kara, 1999; Elsner et al., 1999;
Saunders et al., 2000; Elsner et al., 2000a, b, 2001; Elsner, 2003; Elsner et al.,
2004; Saunders and Lea, 2005).More importantly for the present work, Jagger
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Figure 10.3. (a) Time series and (b) distribution of the logarithm of annual
total insured losses and the (c) time series and (d) distribution of the number
of loss events.
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et al. (2001) and Jagger and Elsner (2006) modeled the wind speeds of hurri-
canes at or near landfall and showed that the exceedance probabilities (e.g.,
wind speeds in excess of 100 knots) vary appreciably with the phase of the
ENSO, the NAO, and Atlantic sea surface temperatures (SSTs). Similarly,
Murnane et al. (2000) modeled the probability of coastal hurricanes condi-
tioned onENSO.A study byGoldenberg et al. (2001) suggests that the number
and strength of Atlantic hurricanes follow a multidecadal cycle of changes in
North Atlantic Ocean currents. This cycle, called the Atlantic Multidecadal
Oscillation (AMO), might be related to changes in radiative forcing and/or
changes in the thermohaline circulation.
The ENSO is characterized by basin-scale fluctuations in sea level pressure

(SLP) between Tahiti and Darwin. Although noisier than equatorial Pacific
SSTs, pressure values are available back to 1900. The Southern Oscillation
Index (SOI) is defined as the normalized sea level pressure difference between
Tahiti and Darwin. The SOI is strongly anti-correlated with equatorial Pacific
SST, with an El Niño warming event associated with negative SOI values.
Units are standard deviations. The relationship between ENSO and hurricane
activity is strongest during the hurricane season, but we are interested in a
predictive relationship, so we use a May–June average of the SOI as our
predictor. The monthly SOI values (Ropelewski and Jones 1997) are obtained
from the Climatic ResearchUnit (CRU) of the University of East Anglia, UK.
The NAO is characterized by fluctuations in sea level pressure differences.

Index values for the NAO (NAOI) are calculated as the difference between the
SLP for Gibraltar and for a station over southwest Iceland, and are obtained
from the CRU (Jones et al., 1997). The values are averaged over the pre- and
early-hurricane season months of May and June (Elsner et al., 2001). We
speculate that the relationship might result from a communication between
the middle latitudes and the tropics (Tsonis and Elsner, 1996) whereby below
normal values of the NAO during the spring lead to dry conditions over the
continents and to a tendency for greater summer/fall middle tropospheric
ridging (enhancing the dry conditions). In turn, tropospheric ridging over
the eastern and western sides of the North Atlantic basin during the hurricane
season tends to keep the middle tropospheric trough of low pressure, respon-
sible for hurricane recurvature, farther to the north and away from the west-
ward tracking tropical cyclones (Elsner and Jagger, 2006).
The AMO is characterized by fluctuations in SST over the North Atlantic

Ocean. Modeled SST and US National Oceanic and Atmospheric
Administration (NOAA) optimal interpolated SST datasets were used to
compute Atlantic SST anomalies north of the equator (Enfield et al., 2001).
Anomalies (in degrees centigrade, 8C) are computed by month for the base
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period 1951–2000. Data are obtained from the NOAA–Cooperative Institute
for Research in Environmental Sciences’ Climate Diagnostics Center
(NOAA–CIRES CDC) back to 1871. For this study we average the Atlantic
SST anomalies over the hurricane preseason months of May and June.
In summary, the distribution of US insured losses from hurricane winds

is statistically modeled by using covariate (predictor) data for the period
1900–2005. We are interested in the preseason values (May–June averaged)
of SOI, NAO, and Atlantic SST as predictors for the distribution of likely
losses during the U.S. hurricane season, which runs principally from July
through October. Figure 10.4 shows time series of the covariate values used
in the model. All three series display large variability from year to year with a
distinct nonlinear trend in the late springtime values of Atlantic SST.
The upper and lower quartile values of the SOI are 0.60 and!0.75 standard

deviation (s.d.), respectively, with a median (mean) value of!0.16 (!0.10) s.d.
Years of below (above) normal SOI correspond to El Niño (La Niña) events
and thus to a lower (higher) probability of hurricanes. The upper and lower
quartile values of the NAO are 0.42 and!1.08 s.d., respectively, with amedian
(mean) value of!0.39 (!0.32) s.d. Years of below (above) normal values of the
NAO correspond to a weak (strong) NAO phase and thus to a higher (lower)
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Figure 10.4. Time series of the three covariates used to predict insured wind
losses from hurricanes before the start of the hurricane season. The values are
averaged over the months ofMay and June. A linear detrended version of the
Atlantic SST is sometimes referred to as the AMO.
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probability of US hurricanes. The upper and lower quartile values of the
Atlantic SST are 0.13 8C and !0.23 8C, respectively, with a median (mean)
value of !0.04 (!0.04) 8C. Years of above (below) normal values of SST
correspond to a higher (lower) probability of hurricane activity. The linear
correlation between the SOI and the NAO (SST) is a negligibleþ 0.03 (!0.04).
The linear correlation between the NAO and Atlantic SST is a marginally
significant value of !0.21.

10.4 Large and small losses

The total amount of insured losses calibrated to 2005 US dollars from the 178
events (1900–2005) is estimated at US$421bn. The large skewness in the
insured losses per event and per annum suggests that it might be a good
strategy to separate large losses from small losses for the purpose of prediction.
It is often quoted that 80%of the total damage from all hurricanes is caused by
the top 20% strongest storms. Figure 10.5 shows that the distribution of loss
data is even a bit more skewed than that. In fact, we find that the top 30 loss
events (less than 17%of the total number of loss events) account formore than
80% of the total loss amount.
The relative infrequency of the largest loss events argues for a split that

favors including more data for modeling. Here we use a cutoff of US$100mn
and find that 113 of the 178 events (63.5%) exceeded this threshold. The
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Figure 10.5. (a) Cumulative percent of total losses as a function of percent
ranking. The reference lines indicate the oft-cited 80%/20% relationship,
whereby the top 20% strongest hurricanes account for 80% of the losses. A
split of the event counts into (b) large loss events and (c) small loss events
based on losses exceeding US$100mn is shown as annual time series. For
reference, 2004 experienced four large and two small loss events.

10 Forecasting US insured hurricane losses 197



//FS2/CUP/3-PAGINATION/DEX/2-PROOFS/3B2/9780521870283C10.3D 198 [189–208] 19.11.2007 9:38AM

remaining 65 events (36.5%) account for only 0.6% of the total losses. Thus it
might be reasonable to assume that the small loss events are at the ‘‘noise’’
level. Time series of the annual number of large and small loss events are
shown in Figure 10.5. The rank correlation between the two series is a negli-
gible 0.06.
Next we examine the influence of the covariates, discussed in the previous

section, on both the magnitude of annual loss and the number of annual loss
events. For the number of loss events, we consider small and large loss events
separately. Using the preseason Atlantic SST, we are able to explain 13% of
the variation in the logarithm of loss values exceeding US$100mn using an
ordinary least squares regression model. The relationship is positive, indicat-
ing that warmer Atlantic SSTs are associated with larger losses as expected.
The rank correlation between the amount of loss (exceeding US$100mn) and
the May–June Atlantic SST is þ 0.31 (p-value¼ 0.0086) over all years in the
dataset and is þ 0.37 (p-value¼ 0.0267) over the shorter 1950–2005 period.
We also examine models for the number of loss events using the covariates.

We find that the NAO is useful in predicting both the number of large loss
events and the number of small loss events. The relationship is negative,
indicating that when the preseason value of the NAO decreases, the probabil-
ity of a loss event increases. The rank correlation between the total number of
loss events and the preseason NAO is –0.29 (p-value¼ 0.0032) over all
years and is !0.12 (p-value¼ 0.3812) over the shorter 1950–2005 period.
Interestingly, we find no significant preseason relationship between event
counts and SST or the SOI.
The analysis confirms that it is reasonable to model small and large loss

events separately. However, it should be noted that it might be more appro-
priate to add measurement error to the data so as to reduce the weight of the
smaller measurements rather than separate the data as is done here. Our final
strategy combines amodel for the loss amount with twomodels for the number
of loss events: one for large losses and the other for small losses. We use the
NAO for predicting the number of loss events (both large and small) and the
SST for predicting the amount of damage given a loss event. We find that
including the preseason SOI covariate does not help in forecasting the upcom-
ing season’s losses either for the amount of loss or for the number of loss
events. This result is consistent with those for the models developed in Elsner
and Jagger (2006) and Elsner et al. (2006b) for predicting coastal hurricane
activity based on preseason data. Since it is well known that ENSO has an
influence on shear during the hurricane season, it might be advantageous to
include a predicted value of the SOI for the hurricane season rather than a
preseason value as is done here.
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10.5 Predicting annual losses

Results from the previous section provide the needed background for building
a preseason model capable of predicting the annual expected loss. The model
uses a hierarchical Bayesian specification. The final form of the model was
based on comparison of the deviance information criterion (DIC) using several
different models involving the three covariates. The DIC is a generalization of
the Akaike information criterion (AIC) and Bayesian information criterion
(BIC). It is useful in Bayesianmodel selection where the posterior distributions
of the models are obtained by Markov chain Monte Carlo (MCMC) simula-
tion. Like the AIC and BIC, it is an asymptotic approximation as the sample
size becomes large. It is only valid when the posterior distribution is close to
multivariate normal. We chose the model with the lowest value of DIC.
A schematic of the hierarchical model is shown in Figure 10.6. The pre-

dicted annual loss (TL) is the sum of the individual loss amounts (both large
[LLL] and small [LLS] amounts) multiplied by the respective number of large
(NL) and small (NS) loss counts. Given the mean ("L) and standard deviation
(sL) of the logarithm of large losses, the logarithm of large loss follows a
truncated normal distribution. Small loss amounts are also specified by using
a truncated normal distribution, although the mean is not a function of any of

NAO SST

NS

TL

λS λL
σL µL µS σS

NL
LLL LLS

Figure 10.6. Hierarchical graph illustrating our strategy for simulating
annual insured losses based on preseason values of the NAO and Atlantic
SST. The connection between nodes is either stochastic (thick arrow) or
logical (thin arrow). Node lL (lS) is the mean annual rate of large (small)
losses, NL (NS) is the annual count of large (small) loss events, mL (mS) is the
mean amount of large (small) loss on a log scale, sL (sS) is the standard
deviation of large (small) loss amounts, LLL (LLS) is the logarithm of large
(small) loss amount, and TL is the total loss.
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the covariates. Given a mean annual rate of large losses (lL), the annual
number of large losses follows a Poisson distribution with the natural loga-
rithm of the rate given as a linear function of the NAO. Similarly, given a
mean annual rate of small losses (lS), the annual number of small losses
follows a Poisson distribution with the natural logarithm of the rate given as a
separate function of the NAO.
Samples of the annual losses are generated by using the WinBUGS

(Windows version of Bayesian inference Using Gibbs Sampling) developed
at the Medical Research Council in the United Kingdom (Gilks et al., 1996;
Spiegelhalter et al., 1996). WinBUGS chooses an appropriate MCMC sam-
pling algorithm based on the model structure. In this way, annual losses are
sampled conditional on the model coefficients and the observed values of the
covariates. The cost associated with a Bayesian approach is the requirement to
formally specify prior beliefs. Here we take the standard route and assume
noninformative priors, which as the name implies provide little information
about the parameters of interest. Markov chain Monte Carlo analysis, in
particular Gibbs sampling, is used to sample the parameters given the data,
since no closed form distribution exists for the truncated normal (or for the
generalized Pareto distribution [GPD] used in the next section).
We check for mixing and convergence by examining successive samples of

the parameters. Samples from the posterior distributions of the parameters
indicate relatively goodmixing and quick settling as two different sets of initial
conditions produce sample values that fluctuate around a fixed mean. Based
on these diagnostics, we discard the first 10,000 samples and analyze the
output from the next 10,000 samples. The utility of the Bayesian approach
for modeling the mean number of coastal hurricanes is described in Elsner and
Jagger (2004).
Figure 10.7 shows the predictive posterior distributions of losses for two

different climate scenarios. The first scenario is characterized by preseason con-
ditions featuring a combination of highNAOvalues and lowSSTvalues. To offer
a strong contrast, we set the values to their maximum andminimum, respectively,
over the 106-year period (1900–2005; NAO ¼þ2.9 s.d. and SST ¼!0.61 8C).
This situation is unfavorable for hurricane activity along theUS coast (Elsner and
Jagger, 2006). Simulation results show that the probability of no loss (47%) is
close to the probability of at least some loss (53%). This result contrasts with
those from the second scenario, which is characterized by conditions favorable
for hurricane activity (NAO ¼!2.7 s.d. and SST ¼þ0.55 8C). Here the prob-
ability of at least some loss is 94%.
Perhaps more useful is the predictive distribution of losses, given that at

least some loss occurs. Here the distributions are shown for the logarithm
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of total annual loss from both scenarios and, as expected, the results are
divergent. In the case of favorable late springtime conditions for hurricane
activity, the loss distribution is shifted toward substantially higher loss
amounts relative to the case of unfavorable conditions. Converting to 2005
dollars, the expected yearly loss in a year with at least one loss when
conditions are favorable for hurricanes is estimated at US$25.2bn. This
compares with US$2.1bn when conditions are unfavorable. The overall
expected loss (taking into account the non-zero probability of no losses) is
US$23.7bn under favorable climate conditions and US$1.1bn under unfa-
vorable conditions. Therefore, assuming the model is correct and the future
will be the same as the past, the model is useful in portending the amount
of insured losses before the start of the season. The interesting side hump in
the distribution of losses is likely an artifact of using a truncated normal
distribution. Both the 2004 and 2005 hurricane seasons featured late spring-
time negative NAO values and above normal Atlantic SST values, which
combined to produce a forecast (hindcast) of above normal insured loss
probabilities.
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Figure 10.7. Simulated annual losses for two different climate scenarios. (a)
The probability of at least some loss and (b) the probability distribution of
loss amounts given at least one loss event under preseason climate conditions
foreshadowing an inactive US landfall season. Plots (c) and (d) are the same
as plots (a) and (b), respectively, except that they are based on preseason
conditions foreshadowing an active US landfall season.

10 Forecasting US insured hurricane losses 201



//FS2/CUP/3-PAGINATION/DEX/2-PROOFS/3B2/9780521870283C10.3D 202 [189–208] 19.11.2007 9:38AM

10.6 Predicting extreme losses

While the modeling strategy described above makes sense for forecasting the
distribution of likely losses associated with climate conditions before the start
of the season, for financial planning it might be of greater interest to know the
maximum possible loss. In this case, the normal distribution is replaced by an
extreme value distribution for the logarithm of losses. For example, the family
of generalized Pareto distributions describes the behavior of individual
extreme events. Consider observations from a collection of random variables
in which only those observations that exceed a fixed value are kept. As the
magnitude of this value increases, the GPD family represents the limiting
behavior of each new collection of random variables. This property makes
the family of GPDs a good choice for modeling extreme events involving large
insured losses. The choice of threshold, above which we treat the values as
extreme, is a compromise between retaining enough observations to properly
estimate the distributional parameters (scale and shape), but few enough that
the observations follow a GPD family. A negative shape parameter implies an
upper limit to the maximum possible loss.
The GPD describes the distribution of losses that exceed a threshold u but

not the frequency of losses at that threshold. As we did with the annual loss
model, we specify that, given a rate of loss events above the threshold, the
number of loss events follows a Poisson distribution. Here there is no need
to consider small loss events, as we are interested only in the large ones.
Combining the GPD for the distribution of large loss amounts with the
Poisson distribution for the frequency of loss events allows us to obtain return
periods for given levels of annual losses.
We determine the particular threshold value for the set of insured losses by

examining the plots shown in Figure 10.8. The mean residual life (MRL) plot
shows the value of the mean excess as a function of threshold. TheMRLplot is
produced by averaging the difference (residual) in the observed logarithm of
loss above a threshold as a function of the threshold. For example, at a log loss
of 9 we subtract 9 from each observed log loss and average only the positive
values (excesses). We repeat this operation for all thresholds. The mean excess
is the expected value of the amount that the observations exceed the threshold.
The standard errors on the mean excess allow us to compute confidence levels
for the estimates. A nearly straight-line negative relationship between the
mean excess and the loss above some threshold indicates the set of extreme
losses. In other words, if extreme values follow a GPD, then their expected
value is a linear function of the threshold. From the plot we see that a straight-
line relationship is noted for losses at about 9 (US$1bn). The other two plots
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show the GPD parameters as a function of threshold. The systematic variation
in the scale and shape parameters with threshold appears to end at a threshold
value between 8.5 and 9, suggesting that only events with losses exceeding this
level are extreme. Taken together, the diagnostic plots suggest that a threshold
value is US$1bn in losses.
As with the annual loss model, we use a Bayesian hierarchical specification

for the model of extreme losses. Markov chain Monte Carlo samples are used
to generate posterior predictive distributions. Here we are interested in the
return level as a function of return period. A schematic of the hierarchical
model is shown in Figure 10.9. The annual return level (RLy) is determined by
the return level of individual extreme events (RLE) and the annual frequency of
such events above a threshold rate (l). The annual number of extreme events
follows a Poisson distribution, with the natural logarithm of the rate specified
as a linear function of the NAO. Given values for the scale (s) and shape (x)
parameters, the return level of individual extreme events follows a GPD. The
logarithm of the scale parameter is a linear function of theNAO, and the shape
parameter is a linear function of the SOI.
As before, samples of the return levels are generated by using WinBUGS

and we use non-informative prior distributions. Samples from the posterior
distribution of the model parameters indicate good mixing and convergence
properties. We discard the first 10,000 samples and analyze the output from
the next 10,000 samples. Applications of Bayesian extremal analysis are
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Figure 10.8. (a) Mean residual life plot for the logarithm of insured hurricane
losses. The outside lines are the 95% confidence limits. An approximate
linear decrease of the mean excess occurs after a threshold of about 9. The
value of the (b) scale and (c) shape parameters from the GPD at various
thresholds. The systematic variation is not detectable for thresholds
exceeding about 9.
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Figure 10.9. Hierarchical graph illustrating our strategy for simulating return
levels for extreme losses conditional on the preseason values of the NAO and
SOI. Nodes x and s are the shape and scale parameters of the GPD,
respectively; l is the mean rate of extreme losses; RLE is the return level for
a particular loss event; andRLY is the return level for total losses over the year.
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Figure 10.10. Simulated extreme losses for two different climate scenarios. (a)
The distribution of return levels in the logarithm of insured losses for the case
of unfavorable conditions for US hurricane landfalls, and (b) the distribution
of return levels for the case of favorable conditions for US hurricane landfalls.
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relatively rare (Coles and Tawn, 1996; Katz et al., 2002; Coles et al., 2003). In
the context of local hurricane winds, Casson and Coles (1999) used a Bayesian
analysis to estimate parameters of spatial regressionmodels. They showed that
including the spatial characteristics of extremes provides a substantial reduc-
tion in the confidence intervals for high quantiles. Bayesian approaches to
modeling extreme wind behavior are given in Walshaw (2000) and Jagger and
Elsner (2006).
Figure 10.10 shows the predictive posterior distributions of extreme losses

for two different climate scenarios. The first scenario is characterized by
preseason conditions featuring a combination of high NAO and high SOI
values. Again, to offer a strong contrast, we set the values to their maximum
and minimum over the 106-year period (1900–2005). Box and whisker plots
are used to illustrate the variation in simulated extreme loss amounts for
increasing return periods.
Results show the clear difference in expected extreme losses for the different

climate conditions. Under the unfavorable scenario for US hurricanes, we find
the expected return level of a 50-year extreme event at less than US$10bn; this
compares with a return level of a 50-year extreme event loss of approximately
US$630bn under favorable scenarios forUS hurricanes. Thus themodel is also
useful for projecting extreme losses over longer time horizons given the pre-
season values of the climate covariates.

10.7 Summary

Coastal hurricanes are capable of generating large financial losses for the
insurance industry. The rarity of large losses in the historical record implies
that empirical estimates of next year’s loss will have large errors. Annual loss
totals are directly related to the size and number of hurricanes affecting the
coast. Since some skill exists in forecasts of coastal hurricane activity, it makes
sense to investigate the potential of predicting losses directly. This chapter
demonstrates a strategy for making forecasts of annual insured losses by July 1
using preseason values for the NAO, Atlantic SST, and the SOI. Models are
specified by using hierarchical Bayesian technology, and predictive posterior
distributions are generated by using MCMC sampling. Markov chain Monte
Carlo sampling provides a method of generating future loss projections.
According to the model of expected annual loss, the probability of incurring
a loss is higher compared to the climatological average when the NAO is
negative. Also, the amount of loss is greater when Atlantic SST is above
normal. Both conditions were met before the 2004 and 2005 hurricane seasons.
While we did not perform an out-of-sample test of model skill, a similar
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hierarchical Bayesian model for US hurricane activity using the same covari-
ates is cross-validated and shown to have skill above climatology in Elsner and
Jagger (2006).
These results are consistent with current understanding of hurricane climate

variability. Forecasts of extreme loss amounts are also possible using a some-
what different model specification and including a preseason value of the
SOI. Return level loss amounts exceed those of climatology under conditions
characterized by a negative NAO. It might be possible to develop a similar
model using data from as early as February 1 (see Elsner et al., 2006b). While
the models here are developed from aggregate loss data for the entire United
States due to Atlantic hurricanes, it would be possible to apply the techni-
ques to model data representing a subset of losses, capturing, for example,
a particular reinsurance portfolio. Moreover, since the models use MCMC
sampling, they can be extended quite easily to include measurement error
as well as missing data. The models and data are available on our web site
(Google key words: hurricane climate).
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