GLOBAL WARMING AND ITS IMPACTS WITH EMPHASIS ON THE CARIBBEAN

Dr Mark Saunders

Benfield Greig Hazard Research Centre Department of Space and Climate Physics University College London, UK

IAC Conference, Antigua 5th June 2001

Earth's Surface Temperature Record

The Past 1,000 Years

2

Are Climate Extremes Increasing?

UK Autumn 2000 Floods (Loss ~ US \$ 750 million)

MONTAGE OF GOES-8 INFRARED IMAGES FROM HURRICANE GEORGES FROM 18-28 SEP 1998 NEAR 12 UT River Ouse, Yorkshire, November 2000 (Courtesy Lawrence Kay)

Hurricane Georges Strikes Caribbean (Loss ~ US \$ 10 billion)

Presentation Structure

 Causes of Long-Term Climate Change
 Evidence for 20th Century Global Climate Change

- **3. Predicted Future Climate Change**
- 4. Climate Extremes
 a) Atlantic and Caribbean Hurricanes
 b) Rainfall Extremes
 c) Temperature Extremes

1. Causes of Long-Term Climate Change

What is Climate Change?

Any change in Earth's Climate on timescales longer than a year.

 a) Interannual (yr-to-yr) ENSO Volcanic Eruptions
 b) Multidecadal Trends Global Warming Solar Changes

Earth seen by Apollo 17 (Courtesy NASA)

MultidecadalTrends

a) Enhanced Greenhouse Effect

Figure Courtesy of Pringle (1988)

b) Solar Influences

Simulated Annual Global Mean Surface Temperature

Adapted from Stott et al., Science, 2000 9

2. Evidence for 20th Century Climate Change

Indirect Evidence

Retreating Glaciers Fewer Frost Days

Trend in Frost Days 1950-1995

Blue is a positive change. Filled circles are significant at 95% level of confidence

(Source: Frich et al., in press, 2001)

Historical Supporting Evidence

Dutch Winter Landscape painted in 1601 by Peter Brueghel the Younger. (Courtesy Kunsthistorisches Museum, Vienna)

More Precipitation

Precipitation Trend 1900-1994

North Atlantic Oscillation

+ve NAO

-ve NAO

(Figures Courtesy of Martin Visbeck, Columbia University)

(Figure Courtesy of Tim Osborn, University of East Anglia)

Caribbean Precipitation

Seasonal Composites by NAO sign

Shading Indicates the Seasons where the Difference in Rainfall Between Low and High NAO Composites is Significant at the 90% Level.

(George and Saunders, 2001)

Sea Level Rise

3. Future Climate Predictions

Global Climate Models (GCMs)

- 1 Most complex of climate models.
- Used to perform climate change experiments.
- 1 Fully coupled ocean and atmosphere.
- Runs may take months to complete on the fastest Cray.

Figure Courtesy of David Viner, Climatic Research Unit, UK

Scenarios for Greenhouse Gas Emissions in the 21st Century

(b) CO₂ concentrations

(a) CO₂ emissions

<u>Global Temperature Change in</u> <u>the 21st Century</u>

Global Warming Temperature Changes 1990-2100

Global Warming Precipitation Changes 1990-2100

<u>Global Sea Level Rise in</u> <u>the 21st Century</u>

4. Climate Extremes

A. Atlantic Hurricanes

 Rank as the largest cause of US catastrophe loss (US \$ 5.3 bn per year 1925-2000)

1 Floyd (pictured) had a damage bill of US \$ 5.0 billion.

Trends in Intense Tropical Cyclone Numbers

Northern Hemisphere 1971-2000

Atlantic Basin 1948-2000

Intense TCs= 1-min Sustained Winds > 73 mphSuper Intense TCs= 1-min Sustained Winds > 110 mph

Key Factors Behind Atlantic Hurricane Activity

Tropical Atlantic, Caribbean and Gulf Hurricane Numbers

r = 0.69

Model Employs August-September Tropical Atlantic Sea Surface Temperature and Caribbean Trade Wind Speed

(Roberts and Saunders, 2001)

Tropical Atlantic, Caribbean and Gulf Hurricane Numbers

r = 0.79

Model Employs August-September Tropical Atlantic Sea Surface Temperature and Caribbean Trade Wind Speed

(Roberts and Saunders, 2001)

Future Projections for Tropical Atlantic, Caribbean and Gulf <u>Hurricane</u> Numbers

Future Projections for Tropical Atlantic, Caribbean and Gulf <u>Intense Hurricane</u> Nos

Future Projections for Tropical Atlantic Vertical Wind Shear

Lesser Antilles Landfalling Hurricane Numbers

r = 0.72

Model Employs Thinning (24% Factor) From Tropical Atlantic Hurricane Numbers.

(Roberts and Saunders, 2001)

Future Projections for Lesser Antilles Hurricane Strikes

B. European Winter Storms

European windstorms
 caused damages of US \$
 2.9 bn per year 1990-1999

Rank as the 2nd highest cause of global insured losses after US hurricanes

Porthleven, Cornwall: 4 Jan 1998 (Courtesy, Simon Burt)

Severe Storm Lothar

Damage bill of US \$ 9.0 billion

 Very deep depression (960 hPa) crossing north France at ~100 km/hr

 Wind gusts of over 170 km/hr

 Zone of very strong winds 150 km wide

(Courtesy NOAA/NESDIS)

NAO Future Projections

(Figure Courtesy of Tim Osborn and Phil Jones, University of East Anglia)

 Suggests slightly increased risk of stormy and wetter winters for UK and northern Europe during 21st Century₁

Storm and ENSO Extremes

	Observed (20th Century)	Modeling (End of 21st Century)	
Storm and El Niño Extremes			
More tropical storms	Unlikely	Possible	
More intense tropical storms	Unlikely	Possible	
More intense mid-latitude storms	Possible	Possible	
More intense El Niño Events	Possible	Possible	
More common El Niño-like conditions	Likely	Likely*	

*No direct model analyses but expected based on other simulated model changes

Probability Levels			
Virtually Certain	> 99%	Unlikely	10 to 33%
Very Likely	90 to 99%	Very Unlikely	1 to 10%
Likely	67 to 90%	Improbable	< 1%
Possible	33 to 66%		

C. Rainfall Extremes

Royal Leamington Spa 10th April 1998 (Courtesy News Team International)

Cologne, January 1995 (Courtesy Munich Re.)

Trends in 20th Century Total and Heavy Rainfall for Various Countries

Trend in Heavy Precipitation

Slight upward trend 1950-1995 but generally not significant.

Blue is a positive change. Filled circles are significant at 95% level of confidence

(Source: Frich et al., in press, 2001)

UCL

Prediction for Rainfall Extremes

England and Wales Autumn Precipitation 1901-2000

England and Wales Winter Precipitation 1900/01-1999/00

England and Wales Drought Index 1901-2000

Precipitation Extremes

	Observed (20th Century)	Modeling (End of 21st Century)	
Precipitation Extremes			
More heavy 1-day precipitation events	Likely	Very Likely	
More floods	Likely	Very Likely	
More droughts	Unlikely	Likely	

Probability Levels			
Virtually Certain	> 99%	Unlikely	10 to 33%
Very Likely	90 to 99%	Very Unlikely	1 to 10%
Likely	67 to 90%	Improbable	< 1%
Possible	33 to 66%		

Probability of a 'Cold' Winter in the 2020s

Europe ACACIA Project (2000)

B1-Low Scenario

Probability of a 'Hot' Summer in the 2020s

Europe ACACIA Project (2000)

B1-Low Scenario

Temperature Extremes

	Observed (20th Century)	Modeling (End of 21st Century)	
<u>Temperature Extremes</u>			
Higher maximum temperatures	Very Likely	Very Likely	
More hot summer days	Likely	Very Likely	
Higher minimum temperatures	Virtually Certain	Very Likely	
Fewer frost days	Virtually Certain	Likely*	
More heat waves	Possible	Very Likely*	
Fewer cold waves	Very Likely	Very Likely*	

*No direct model analyses but expected based on other simulated model changes

Probability Levels			
Virtually Certain	> 99%	Unlikely	10 to 33%
Very Likely	90 to 99%	Very Unlikely	1 to 10%
Likely	67 to 90%	Improbable	< 1%
Possible	33 to 66%		

5. Conclusions - Global

- The concern that climate change will <u>slowly</u> increase the number of extreme events is justified for floods, droughts and heatwaves.
- For other extremes (including Atlantic hurricanes and European windstorms) the situation is unclear and trends could be small.
- The majority of future changes in climate extremes affecting the (Re)Insurance Industry will continue to result from <u>natural interannual</u> <u>and decadal variability</u>.

UCL

5. Conclusions - Caribbean

- Lesser Antilles Hurricane Strikes upward trend appears likely.
- Caribbean Rainfall winter increase but overall annual decrease.
- Increased risk of Heatwaves.
- Sea level to rise by 0.4±0.2 m.
- The majority of future changes in climate extremes affecting the (Re)Insurance Industry will continue to result from <u>natural interannual</u> and decadal variability.